Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\times 3x+\frac{1}{2}\left(-5\right)=\frac{2}{5}\left(4x+9\right)
Use the distributive property to multiply \frac{1}{2} by 3x-5.
\frac{3}{2}x+\frac{1}{2}\left(-5\right)=\frac{2}{5}\left(4x+9\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x+\frac{-5}{2}=\frac{2}{5}\left(4x+9\right)
Multiply \frac{1}{2} and -5 to get \frac{-5}{2}.
\frac{3}{2}x-\frac{5}{2}=\frac{2}{5}\left(4x+9\right)
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
\frac{3}{2}x-\frac{5}{2}=\frac{2}{5}\times 4x+\frac{2}{5}\times 9
Use the distributive property to multiply \frac{2}{5} by 4x+9.
\frac{3}{2}x-\frac{5}{2}=\frac{2\times 4}{5}x+\frac{2}{5}\times 9
Express \frac{2}{5}\times 4 as a single fraction.
\frac{3}{2}x-\frac{5}{2}=\frac{8}{5}x+\frac{2}{5}\times 9
Multiply 2 and 4 to get 8.
\frac{3}{2}x-\frac{5}{2}=\frac{8}{5}x+\frac{2\times 9}{5}
Express \frac{2}{5}\times 9 as a single fraction.
\frac{3}{2}x-\frac{5}{2}=\frac{8}{5}x+\frac{18}{5}
Multiply 2 and 9 to get 18.
\frac{3}{2}x-\frac{5}{2}-\frac{8}{5}x=\frac{18}{5}
Subtract \frac{8}{5}x from both sides.
-\frac{1}{10}x-\frac{5}{2}=\frac{18}{5}
Combine \frac{3}{2}x and -\frac{8}{5}x to get -\frac{1}{10}x.
-\frac{1}{10}x=\frac{18}{5}+\frac{5}{2}
Add \frac{5}{2} to both sides.
-\frac{1}{10}x=\frac{36}{10}+\frac{25}{10}
Least common multiple of 5 and 2 is 10. Convert \frac{18}{5} and \frac{5}{2} to fractions with denominator 10.
-\frac{1}{10}x=\frac{36+25}{10}
Since \frac{36}{10} and \frac{25}{10} have the same denominator, add them by adding their numerators.
-\frac{1}{10}x=\frac{61}{10}
Add 36 and 25 to get 61.
x=\frac{61}{10}\left(-10\right)
Multiply both sides by -10, the reciprocal of -\frac{1}{10}.
x=\frac{61\left(-10\right)}{10}
Express \frac{61}{10}\left(-10\right) as a single fraction.
x=\frac{-610}{10}
Multiply 61 and -10 to get -610.
x=-61
Divide -610 by 10 to get -61.