Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\times 3x+\frac{1}{2}\left(-1\right)>5x-2+\frac{1}{4}
Use the distributive property to multiply \frac{1}{2} by 3x-1.
\frac{3}{2}x+\frac{1}{2}\left(-1\right)>5x-2+\frac{1}{4}
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x-\frac{1}{2}>5x-2+\frac{1}{4}
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{3}{2}x-\frac{1}{2}>5x-\frac{8}{4}+\frac{1}{4}
Convert -2 to fraction -\frac{8}{4}.
\frac{3}{2}x-\frac{1}{2}>5x+\frac{-8+1}{4}
Since -\frac{8}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{3}{2}x-\frac{1}{2}>5x-\frac{7}{4}
Add -8 and 1 to get -7.
\frac{3}{2}x-\frac{1}{2}-5x>-\frac{7}{4}
Subtract 5x from both sides.
-\frac{7}{2}x-\frac{1}{2}>-\frac{7}{4}
Combine \frac{3}{2}x and -5x to get -\frac{7}{2}x.
-\frac{7}{2}x>-\frac{7}{4}+\frac{1}{2}
Add \frac{1}{2} to both sides.
-\frac{7}{2}x>-\frac{7}{4}+\frac{2}{4}
Least common multiple of 4 and 2 is 4. Convert -\frac{7}{4} and \frac{1}{2} to fractions with denominator 4.
-\frac{7}{2}x>\frac{-7+2}{4}
Since -\frac{7}{4} and \frac{2}{4} have the same denominator, add them by adding their numerators.
-\frac{7}{2}x>-\frac{5}{4}
Add -7 and 2 to get -5.
x<-\frac{5}{4}\left(-\frac{2}{7}\right)
Multiply both sides by -\frac{2}{7}, the reciprocal of -\frac{7}{2}. Since -\frac{7}{2} is negative, the inequality direction is changed.
x<\frac{-5\left(-2\right)}{4\times 7}
Multiply -\frac{5}{4} times -\frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
x<\frac{10}{28}
Do the multiplications in the fraction \frac{-5\left(-2\right)}{4\times 7}.
x<\frac{5}{14}
Reduce the fraction \frac{10}{28} to lowest terms by extracting and canceling out 2.