Evaluate
2+y+4y^{3}-11y^{4}
Expand
2+y+4y^{3}-11y^{4}
Graph
Share
Copied to clipboard
\frac{1}{2}\left(4\left(y^{2}\right)^{2}+4y^{2}+1\right)-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(\frac{1}{2}\left(2y^{2}+1\right)-1\right)^{2}-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2y^{2}+1\right)^{2}.
\frac{1}{2}\left(4y^{4}+4y^{2}+1\right)-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(\frac{1}{2}\left(2y^{2}+1\right)-1\right)^{2}-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(\frac{1}{2}\left(2y^{2}+1\right)-1\right)^{2}-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
Use the distributive property to multiply \frac{1}{2} by 4y^{4}+4y^{2}+1.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(y^{2}+\frac{1}{2}-1\right)^{2}-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
Use the distributive property to multiply \frac{1}{2} by 2y^{2}+1.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(y^{2}-\frac{1}{2}\right)^{2}-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
Subtract 1 from \frac{1}{2} to get -\frac{1}{2}.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(\left(y^{2}\right)^{2}-y^{2}+\frac{1}{4}\right)-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y^{2}-\frac{1}{2}\right)^{2}.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(y^{4}-y^{2}+\frac{1}{4}\right)-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-y^{4}+y^{2}-\frac{1}{4}-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
To find the opposite of y^{4}-y^{2}+\frac{1}{4}, find the opposite of each term.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-y^{4}+y^{2}-\frac{1}{4}-\left(4y^{4}-4y^{3}+3y^{2}-y+\frac{1}{4}\right)
Square 2y^{2}+\frac{1}{2}-y.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-y^{4}+y^{2}-\frac{1}{4}-4y^{4}+4y^{3}-3y^{2}+y-\frac{1}{4}
To find the opposite of 4y^{4}-4y^{3}+3y^{2}-y+\frac{1}{4}, find the opposite of each term.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-5y^{4}+y^{2}-\frac{1}{4}+4y^{3}-3y^{2}+y-\frac{1}{4}
Combine -y^{4} and -4y^{4} to get -5y^{4}.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-5y^{4}-2y^{2}-\frac{1}{4}+4y^{3}+y-\frac{1}{4}
Combine y^{2} and -3y^{2} to get -2y^{2}.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-5y^{4}-2y^{2}-\frac{1}{2}+4y^{3}+y
Subtract \frac{1}{4} from -\frac{1}{4} to get -\frac{1}{2}.
2y^{4}+2y^{2}+\frac{1}{2}+\left(-4y^{2}-2\right)\left(2y^{2}-1\right)-5y^{4}-2y^{2}-\frac{1}{2}+4y^{3}+y
Use the distributive property to multiply -2 by 2y^{2}+1.
2y^{4}+2y^{2}+\frac{1}{2}-8y^{4}+2-5y^{4}-2y^{2}-\frac{1}{2}+4y^{3}+y
Use the distributive property to multiply -4y^{2}-2 by 2y^{2}-1 and combine like terms.
-6y^{4}+2y^{2}+\frac{1}{2}+2-5y^{4}-2y^{2}-\frac{1}{2}+4y^{3}+y
Combine 2y^{4} and -8y^{4} to get -6y^{4}.
-6y^{4}+2y^{2}+\frac{5}{2}-5y^{4}-2y^{2}-\frac{1}{2}+4y^{3}+y
Add \frac{1}{2} and 2 to get \frac{5}{2}.
-11y^{4}+2y^{2}+\frac{5}{2}-2y^{2}-\frac{1}{2}+4y^{3}+y
Combine -6y^{4} and -5y^{4} to get -11y^{4}.
-11y^{4}+\frac{5}{2}-\frac{1}{2}+4y^{3}+y
Combine 2y^{2} and -2y^{2} to get 0.
-11y^{4}+2+4y^{3}+y
Subtract \frac{1}{2} from \frac{5}{2} to get 2.
\frac{1}{2}\left(4\left(y^{2}\right)^{2}+4y^{2}+1\right)-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(\frac{1}{2}\left(2y^{2}+1\right)-1\right)^{2}-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2y^{2}+1\right)^{2}.
\frac{1}{2}\left(4y^{4}+4y^{2}+1\right)-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(\frac{1}{2}\left(2y^{2}+1\right)-1\right)^{2}-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(\frac{1}{2}\left(2y^{2}+1\right)-1\right)^{2}-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
Use the distributive property to multiply \frac{1}{2} by 4y^{4}+4y^{2}+1.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(y^{2}+\frac{1}{2}-1\right)^{2}-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
Use the distributive property to multiply \frac{1}{2} by 2y^{2}+1.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(y^{2}-\frac{1}{2}\right)^{2}-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
Subtract 1 from \frac{1}{2} to get -\frac{1}{2}.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(\left(y^{2}\right)^{2}-y^{2}+\frac{1}{4}\right)-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y^{2}-\frac{1}{2}\right)^{2}.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-\left(y^{4}-y^{2}+\frac{1}{4}\right)-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-y^{4}+y^{2}-\frac{1}{4}-\left(2y^{2}+\frac{1}{2}-y\right)^{2}
To find the opposite of y^{4}-y^{2}+\frac{1}{4}, find the opposite of each term.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-y^{4}+y^{2}-\frac{1}{4}-\left(4y^{4}-4y^{3}+3y^{2}-y+\frac{1}{4}\right)
Square 2y^{2}+\frac{1}{2}-y.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-y^{4}+y^{2}-\frac{1}{4}-4y^{4}+4y^{3}-3y^{2}+y-\frac{1}{4}
To find the opposite of 4y^{4}-4y^{3}+3y^{2}-y+\frac{1}{4}, find the opposite of each term.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-5y^{4}+y^{2}-\frac{1}{4}+4y^{3}-3y^{2}+y-\frac{1}{4}
Combine -y^{4} and -4y^{4} to get -5y^{4}.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-5y^{4}-2y^{2}-\frac{1}{4}+4y^{3}+y-\frac{1}{4}
Combine y^{2} and -3y^{2} to get -2y^{2}.
2y^{4}+2y^{2}+\frac{1}{2}-2\left(2y^{2}+1\right)\left(2y^{2}-1\right)-5y^{4}-2y^{2}-\frac{1}{2}+4y^{3}+y
Subtract \frac{1}{4} from -\frac{1}{4} to get -\frac{1}{2}.
2y^{4}+2y^{2}+\frac{1}{2}+\left(-4y^{2}-2\right)\left(2y^{2}-1\right)-5y^{4}-2y^{2}-\frac{1}{2}+4y^{3}+y
Use the distributive property to multiply -2 by 2y^{2}+1.
2y^{4}+2y^{2}+\frac{1}{2}-8y^{4}+2-5y^{4}-2y^{2}-\frac{1}{2}+4y^{3}+y
Use the distributive property to multiply -4y^{2}-2 by 2y^{2}-1 and combine like terms.
-6y^{4}+2y^{2}+\frac{1}{2}+2-5y^{4}-2y^{2}-\frac{1}{2}+4y^{3}+y
Combine 2y^{4} and -8y^{4} to get -6y^{4}.
-6y^{4}+2y^{2}+\frac{5}{2}-5y^{4}-2y^{2}-\frac{1}{2}+4y^{3}+y
Add \frac{1}{2} and 2 to get \frac{5}{2}.
-11y^{4}+2y^{2}+\frac{5}{2}-2y^{2}-\frac{1}{2}+4y^{3}+y
Combine -6y^{4} and -5y^{4} to get -11y^{4}.
-11y^{4}+\frac{5}{2}-\frac{1}{2}+4y^{3}+y
Combine 2y^{2} and -2y^{2} to get 0.
-11y^{4}+2+4y^{3}+y
Subtract \frac{1}{2} from \frac{5}{2} to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}