Evaluate
\frac{4x}{3}-\frac{13}{6}
Expand
\frac{4x}{3}-\frac{13}{6}
Graph
Share
Copied to clipboard
\frac{1}{2}\times 2x+\frac{1}{2}\left(-3\right)-\frac{1}{3}\left(2-x\right)
Use the distributive property to multiply \frac{1}{2} by 2x-3.
x+\frac{1}{2}\left(-3\right)-\frac{1}{3}\left(2-x\right)
Cancel out 2 and 2.
x+\frac{-3}{2}-\frac{1}{3}\left(2-x\right)
Multiply \frac{1}{2} and -3 to get \frac{-3}{2}.
x-\frac{3}{2}-\frac{1}{3}\left(2-x\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
x-\frac{3}{2}-\frac{1}{3}\times 2-\frac{1}{3}\left(-1\right)x
Use the distributive property to multiply -\frac{1}{3} by 2-x.
x-\frac{3}{2}+\frac{-2}{3}-\frac{1}{3}\left(-1\right)x
Express -\frac{1}{3}\times 2 as a single fraction.
x-\frac{3}{2}-\frac{2}{3}-\frac{1}{3}\left(-1\right)x
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
x-\frac{3}{2}-\frac{2}{3}+\frac{1}{3}x
Multiply -\frac{1}{3} and -1 to get \frac{1}{3}.
x-\frac{9}{6}-\frac{4}{6}+\frac{1}{3}x
Least common multiple of 2 and 3 is 6. Convert -\frac{3}{2} and \frac{2}{3} to fractions with denominator 6.
x+\frac{-9-4}{6}+\frac{1}{3}x
Since -\frac{9}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
x-\frac{13}{6}+\frac{1}{3}x
Subtract 4 from -9 to get -13.
\frac{4}{3}x-\frac{13}{6}
Combine x and \frac{1}{3}x to get \frac{4}{3}x.
\frac{1}{2}\times 2x+\frac{1}{2}\left(-3\right)-\frac{1}{3}\left(2-x\right)
Use the distributive property to multiply \frac{1}{2} by 2x-3.
x+\frac{1}{2}\left(-3\right)-\frac{1}{3}\left(2-x\right)
Cancel out 2 and 2.
x+\frac{-3}{2}-\frac{1}{3}\left(2-x\right)
Multiply \frac{1}{2} and -3 to get \frac{-3}{2}.
x-\frac{3}{2}-\frac{1}{3}\left(2-x\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
x-\frac{3}{2}-\frac{1}{3}\times 2-\frac{1}{3}\left(-1\right)x
Use the distributive property to multiply -\frac{1}{3} by 2-x.
x-\frac{3}{2}+\frac{-2}{3}-\frac{1}{3}\left(-1\right)x
Express -\frac{1}{3}\times 2 as a single fraction.
x-\frac{3}{2}-\frac{2}{3}-\frac{1}{3}\left(-1\right)x
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
x-\frac{3}{2}-\frac{2}{3}+\frac{1}{3}x
Multiply -\frac{1}{3} and -1 to get \frac{1}{3}.
x-\frac{9}{6}-\frac{4}{6}+\frac{1}{3}x
Least common multiple of 2 and 3 is 6. Convert -\frac{3}{2} and \frac{2}{3} to fractions with denominator 6.
x+\frac{-9-4}{6}+\frac{1}{3}x
Since -\frac{9}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
x-\frac{13}{6}+\frac{1}{3}x
Subtract 4 from -9 to get -13.
\frac{4}{3}x-\frac{13}{6}
Combine x and \frac{1}{3}x to get \frac{4}{3}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}