Solve for x (complex solution)
x\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
\frac{1}{2}\times 2x+\frac{1}{2}\left(-2\right)+3x=10\left(\frac{2}{5}x-\frac{1}{10}\right)
Use the distributive property to multiply \frac{1}{2} by 2x-2.
x+\frac{1}{2}\left(-2\right)+3x=10\left(\frac{2}{5}x-\frac{1}{10}\right)
Cancel out 2 and 2.
x+\frac{-2}{2}+3x=10\left(\frac{2}{5}x-\frac{1}{10}\right)
Multiply \frac{1}{2} and -2 to get \frac{-2}{2}.
x-1+3x=10\left(\frac{2}{5}x-\frac{1}{10}\right)
Divide -2 by 2 to get -1.
4x-1=10\left(\frac{2}{5}x-\frac{1}{10}\right)
Combine x and 3x to get 4x.
4x-1=10\times \frac{2}{5}x+10\left(-\frac{1}{10}\right)
Use the distributive property to multiply 10 by \frac{2}{5}x-\frac{1}{10}.
4x-1=\frac{10\times 2}{5}x+10\left(-\frac{1}{10}\right)
Express 10\times \frac{2}{5} as a single fraction.
4x-1=\frac{20}{5}x+10\left(-\frac{1}{10}\right)
Multiply 10 and 2 to get 20.
4x-1=4x+10\left(-\frac{1}{10}\right)
Divide 20 by 5 to get 4.
4x-1=4x-1
Cancel out 10 and 10.
4x-1-4x=-1
Subtract 4x from both sides.
-1=-1
Combine 4x and -4x to get 0.
\text{true}
Compare -1 and -1.
x\in \mathrm{C}
This is true for any x.
\frac{1}{2}\times 2x+\frac{1}{2}\left(-2\right)+3x=10\left(\frac{2}{5}x-\frac{1}{10}\right)
Use the distributive property to multiply \frac{1}{2} by 2x-2.
x+\frac{1}{2}\left(-2\right)+3x=10\left(\frac{2}{5}x-\frac{1}{10}\right)
Cancel out 2 and 2.
x+\frac{-2}{2}+3x=10\left(\frac{2}{5}x-\frac{1}{10}\right)
Multiply \frac{1}{2} and -2 to get \frac{-2}{2}.
x-1+3x=10\left(\frac{2}{5}x-\frac{1}{10}\right)
Divide -2 by 2 to get -1.
4x-1=10\left(\frac{2}{5}x-\frac{1}{10}\right)
Combine x and 3x to get 4x.
4x-1=10\times \frac{2}{5}x+10\left(-\frac{1}{10}\right)
Use the distributive property to multiply 10 by \frac{2}{5}x-\frac{1}{10}.
4x-1=\frac{10\times 2}{5}x+10\left(-\frac{1}{10}\right)
Express 10\times \frac{2}{5} as a single fraction.
4x-1=\frac{20}{5}x+10\left(-\frac{1}{10}\right)
Multiply 10 and 2 to get 20.
4x-1=4x+10\left(-\frac{1}{10}\right)
Divide 20 by 5 to get 4.
4x-1=4x-1
Cancel out 10 and 10.
4x-1-4x=-1
Subtract 4x from both sides.
-1=-1
Combine 4x and -4x to get 0.
\text{true}
Compare -1 and -1.
x\in \mathrm{R}
This is true for any x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}