Solve for x
x=\frac{\sqrt{34770}}{1425}\approx 0.130854144
x=-\frac{\sqrt{34770}}{1425}\approx -0.130854144
Graph
Share
Copied to clipboard
\frac{19}{40}\times \left(\frac{x}{2}\right)^{2}+\frac{1}{2}\times 1.9x^{2}=1.83\times 10^{-2}
Multiply \frac{1}{2} and 0.95 to get \frac{19}{40}.
\frac{19}{40}\times \frac{x^{2}}{2^{2}}+\frac{1}{2}\times 1.9x^{2}=1.83\times 10^{-2}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{19x^{2}}{40\times 2^{2}}+\frac{1}{2}\times 1.9x^{2}=1.83\times 10^{-2}
Multiply \frac{19}{40} times \frac{x^{2}}{2^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{19x^{2}}{40\times 2^{2}}+\frac{19}{20}x^{2}=1.83\times 10^{-2}
Multiply \frac{1}{2} and 1.9 to get \frac{19}{20}.
\frac{19x^{2}}{40\times 2^{2}}+\frac{19}{20}x^{2}=1.83\times \frac{1}{100}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{19x^{2}}{40\times 2^{2}}+\frac{19}{20}x^{2}=\frac{183}{10000}
Multiply 1.83 and \frac{1}{100} to get \frac{183}{10000}.
\frac{19x^{2}}{40\times 4}+\frac{19}{20}x^{2}=\frac{183}{10000}
Calculate 2 to the power of 2 and get 4.
\frac{19x^{2}}{160}+\frac{19}{20}x^{2}=\frac{183}{10000}
Multiply 40 and 4 to get 160.
125\times 19x^{2}+19000x^{2}=366
Multiply both sides of the equation by 20000, the least common multiple of 160,20,10000.
19\times 125x^{2}+19000x^{2}=366
Reorder the terms.
2375x^{2}+19000x^{2}=366
Multiply 19 and 125 to get 2375.
21375x^{2}=366
Combine 2375x^{2} and 19000x^{2} to get 21375x^{2}.
x^{2}=\frac{366}{21375}
Divide both sides by 21375.
x^{2}=\frac{122}{7125}
Reduce the fraction \frac{366}{21375} to lowest terms by extracting and canceling out 3.
x=\frac{\sqrt{34770}}{1425} x=-\frac{\sqrt{34770}}{1425}
Take the square root of both sides of the equation.
\frac{19}{40}\times \left(\frac{x}{2}\right)^{2}+\frac{1}{2}\times 1.9x^{2}=1.83\times 10^{-2}
Multiply \frac{1}{2} and 0.95 to get \frac{19}{40}.
\frac{19}{40}\times \frac{x^{2}}{2^{2}}+\frac{1}{2}\times 1.9x^{2}=1.83\times 10^{-2}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{19x^{2}}{40\times 2^{2}}+\frac{1}{2}\times 1.9x^{2}=1.83\times 10^{-2}
Multiply \frac{19}{40} times \frac{x^{2}}{2^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{19x^{2}}{40\times 2^{2}}+\frac{19}{20}x^{2}=1.83\times 10^{-2}
Multiply \frac{1}{2} and 1.9 to get \frac{19}{20}.
\frac{19x^{2}}{40\times 2^{2}}+\frac{19}{20}x^{2}=1.83\times \frac{1}{100}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{19x^{2}}{40\times 2^{2}}+\frac{19}{20}x^{2}=\frac{183}{10000}
Multiply 1.83 and \frac{1}{100} to get \frac{183}{10000}.
\frac{19x^{2}}{40\times 4}+\frac{19}{20}x^{2}=\frac{183}{10000}
Calculate 2 to the power of 2 and get 4.
\frac{19x^{2}}{160}+\frac{19}{20}x^{2}=\frac{183}{10000}
Multiply 40 and 4 to get 160.
\frac{19x^{2}}{160}+\frac{19}{20}x^{2}-\frac{183}{10000}=0
Subtract \frac{183}{10000} from both sides.
\frac{125\times 19x^{2}}{20000}+\frac{19}{20}x^{2}-\frac{183\times 2}{20000}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 160 and 10000 is 20000. Multiply \frac{19x^{2}}{160} times \frac{125}{125}. Multiply \frac{183}{10000} times \frac{2}{2}.
\frac{125\times 19x^{2}-183\times 2}{20000}+\frac{19}{20}x^{2}=0
Since \frac{125\times 19x^{2}}{20000} and \frac{183\times 2}{20000} have the same denominator, subtract them by subtracting their numerators.
\frac{2375x^{2}-366}{20000}+\frac{19}{20}x^{2}=0
Do the multiplications in 125\times 19x^{2}-183\times 2.
2375x^{2}-366+19000x^{2}=0
Multiply both sides of the equation by 20000, the least common multiple of 20000,20.
2375x^{2}+19000x^{2}-366=0
Reorder the terms.
21375x^{2}-366=0
Combine 2375x^{2} and 19000x^{2} to get 21375x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 21375\left(-366\right)}}{2\times 21375}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21375 for a, 0 for b, and -366 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 21375\left(-366\right)}}{2\times 21375}
Square 0.
x=\frac{0±\sqrt{-85500\left(-366\right)}}{2\times 21375}
Multiply -4 times 21375.
x=\frac{0±\sqrt{31293000}}{2\times 21375}
Multiply -85500 times -366.
x=\frac{0±30\sqrt{34770}}{2\times 21375}
Take the square root of 31293000.
x=\frac{0±30\sqrt{34770}}{42750}
Multiply 2 times 21375.
x=\frac{\sqrt{34770}}{1425}
Now solve the equation x=\frac{0±30\sqrt{34770}}{42750} when ± is plus.
x=-\frac{\sqrt{34770}}{1425}
Now solve the equation x=\frac{0±30\sqrt{34770}}{42750} when ± is minus.
x=\frac{\sqrt{34770}}{1425} x=-\frac{\sqrt{34770}}{1425}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}