Solve for x
x = -\frac{19}{6} = -3\frac{1}{6} \approx -3.166666667
Graph
Share
Copied to clipboard
\frac{1}{2}\left(-2\right)+\frac{1}{2}\times 2x=-\frac{5}{4}\left(-3-2x\right)
Use the distributive property to multiply \frac{1}{2} by -2+2x.
\frac{-2}{2}+\frac{1}{2}\times 2x=-\frac{5}{4}\left(-3-2x\right)
Multiply \frac{1}{2} and -2 to get \frac{-2}{2}.
-1+\frac{1}{2}\times 2x=-\frac{5}{4}\left(-3-2x\right)
Divide -2 by 2 to get -1.
-1+x=-\frac{5}{4}\left(-3-2x\right)
Cancel out 2 and 2.
-1+x=-\frac{5}{4}\left(-3\right)-\frac{5}{4}\left(-2\right)x
Use the distributive property to multiply -\frac{5}{4} by -3-2x.
-1+x=\frac{-5\left(-3\right)}{4}-\frac{5}{4}\left(-2\right)x
Express -\frac{5}{4}\left(-3\right) as a single fraction.
-1+x=\frac{15}{4}-\frac{5}{4}\left(-2\right)x
Multiply -5 and -3 to get 15.
-1+x=\frac{15}{4}+\frac{-5\left(-2\right)}{4}x
Express -\frac{5}{4}\left(-2\right) as a single fraction.
-1+x=\frac{15}{4}+\frac{10}{4}x
Multiply -5 and -2 to get 10.
-1+x=\frac{15}{4}+\frac{5}{2}x
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
-1+x-\frac{5}{2}x=\frac{15}{4}
Subtract \frac{5}{2}x from both sides.
-1-\frac{3}{2}x=\frac{15}{4}
Combine x and -\frac{5}{2}x to get -\frac{3}{2}x.
-\frac{3}{2}x=\frac{15}{4}+1
Add 1 to both sides.
-\frac{3}{2}x=\frac{15}{4}+\frac{4}{4}
Convert 1 to fraction \frac{4}{4}.
-\frac{3}{2}x=\frac{15+4}{4}
Since \frac{15}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
-\frac{3}{2}x=\frac{19}{4}
Add 15 and 4 to get 19.
x=\frac{19}{4}\left(-\frac{2}{3}\right)
Multiply both sides by -\frac{2}{3}, the reciprocal of -\frac{3}{2}.
x=\frac{19\left(-2\right)}{4\times 3}
Multiply \frac{19}{4} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-38}{12}
Do the multiplications in the fraction \frac{19\left(-2\right)}{4\times 3}.
x=-\frac{19}{6}
Reduce the fraction \frac{-38}{12} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}