Evaluate
\frac{115\left(\sqrt{81130}-20\right)}{1014}\approx 30.035333063
Share
Copied to clipboard
\frac{1}{2}\times \left(\frac{115}{39}\right)^{2}\times \frac{180}{345}\left(-1+\sqrt{1+\frac{2\times 234\times 345}{620+180}}\right)
Reduce the fraction \frac{690}{234} to lowest terms by extracting and canceling out 6.
\frac{1}{2}\times \frac{13225}{1521}\times \frac{180}{345}\left(-1+\sqrt{1+\frac{2\times 234\times 345}{620+180}}\right)
Calculate \frac{115}{39} to the power of 2 and get \frac{13225}{1521}.
\frac{13225}{3042}\times \frac{180}{345}\left(-1+\sqrt{1+\frac{2\times 234\times 345}{620+180}}\right)
Multiply \frac{1}{2} and \frac{13225}{1521} to get \frac{13225}{3042}.
\frac{13225}{3042}\times \frac{12}{23}\left(-1+\sqrt{1+\frac{2\times 234\times 345}{620+180}}\right)
Reduce the fraction \frac{180}{345} to lowest terms by extracting and canceling out 15.
\frac{1150}{507}\left(-1+\sqrt{1+\frac{2\times 234\times 345}{620+180}}\right)
Multiply \frac{13225}{3042} and \frac{12}{23} to get \frac{1150}{507}.
\frac{1150}{507}\left(-1+\sqrt{1+\frac{468\times 345}{620+180}}\right)
Multiply 2 and 234 to get 468.
\frac{1150}{507}\left(-1+\sqrt{1+\frac{161460}{620+180}}\right)
Multiply 468 and 345 to get 161460.
\frac{1150}{507}\left(-1+\sqrt{1+\frac{161460}{800}}\right)
Add 620 and 180 to get 800.
\frac{1150}{507}\left(-1+\sqrt{1+\frac{8073}{40}}\right)
Reduce the fraction \frac{161460}{800} to lowest terms by extracting and canceling out 20.
\frac{1150}{507}\left(-1+\sqrt{\frac{8113}{40}}\right)
Add 1 and \frac{8073}{40} to get \frac{8113}{40}.
\frac{1150}{507}\left(-1+\frac{\sqrt{8113}}{\sqrt{40}}\right)
Rewrite the square root of the division \sqrt{\frac{8113}{40}} as the division of square roots \frac{\sqrt{8113}}{\sqrt{40}}.
\frac{1150}{507}\left(-1+\frac{\sqrt{8113}}{2\sqrt{10}}\right)
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\frac{1150}{507}\left(-1+\frac{\sqrt{8113}\sqrt{10}}{2\left(\sqrt{10}\right)^{2}}\right)
Rationalize the denominator of \frac{\sqrt{8113}}{2\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{1150}{507}\left(-1+\frac{\sqrt{8113}\sqrt{10}}{2\times 10}\right)
The square of \sqrt{10} is 10.
\frac{1150}{507}\left(-1+\frac{\sqrt{81130}}{2\times 10}\right)
To multiply \sqrt{8113} and \sqrt{10}, multiply the numbers under the square root.
\frac{1150}{507}\left(-1+\frac{\sqrt{81130}}{20}\right)
Multiply 2 and 10 to get 20.
\frac{1150}{507}\left(-\frac{20}{20}+\frac{\sqrt{81130}}{20}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -1 times \frac{20}{20}.
\frac{1150}{507}\times \frac{-20+\sqrt{81130}}{20}
Since -\frac{20}{20} and \frac{\sqrt{81130}}{20} have the same denominator, add them by adding their numerators.
\frac{1150\left(-20+\sqrt{81130}\right)}{507\times 20}
Multiply \frac{1150}{507} times \frac{-20+\sqrt{81130}}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{115\left(\sqrt{81130}-20\right)}{2\times 507}
Cancel out 10 in both numerator and denominator.
\frac{115\left(\sqrt{81130}-20\right)}{1014}
Multiply 2 and 507 to get 1014.
\frac{115\sqrt{81130}-2300}{1014}
Use the distributive property to multiply 115 by \sqrt{81130}-20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}