Solve for S_3
S_{3} = \frac{2091}{353} = 5\frac{326}{353} \approx 5.923512748
Share
Copied to clipboard
\frac{1}{2}\times \frac{36}{353\times 2}+\frac{1}{3}S_{3}=2
Express \frac{\frac{36}{353}}{2} as a single fraction.
\frac{1}{2}\times \frac{36}{706}+\frac{1}{3}S_{3}=2
Multiply 353 and 2 to get 706.
\frac{1}{2}\times \frac{18}{353}+\frac{1}{3}S_{3}=2
Reduce the fraction \frac{36}{706} to lowest terms by extracting and canceling out 2.
\frac{1\times 18}{2\times 353}+\frac{1}{3}S_{3}=2
Multiply \frac{1}{2} times \frac{18}{353} by multiplying numerator times numerator and denominator times denominator.
\frac{18}{706}+\frac{1}{3}S_{3}=2
Do the multiplications in the fraction \frac{1\times 18}{2\times 353}.
\frac{9}{353}+\frac{1}{3}S_{3}=2
Reduce the fraction \frac{18}{706} to lowest terms by extracting and canceling out 2.
\frac{1}{3}S_{3}=2-\frac{9}{353}
Subtract \frac{9}{353} from both sides.
\frac{1}{3}S_{3}=\frac{706}{353}-\frac{9}{353}
Convert 2 to fraction \frac{706}{353}.
\frac{1}{3}S_{3}=\frac{706-9}{353}
Since \frac{706}{353} and \frac{9}{353} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}S_{3}=\frac{697}{353}
Subtract 9 from 706 to get 697.
S_{3}=\frac{697}{353}\times 3
Multiply both sides by 3, the reciprocal of \frac{1}{3}.
S_{3}=\frac{697\times 3}{353}
Express \frac{697}{353}\times 3 as a single fraction.
S_{3}=\frac{2091}{353}
Multiply 697 and 3 to get 2091.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}