Solve for x
x=\frac{11}{14}\approx 0.785714286
Graph
Share
Copied to clipboard
\frac{1}{2}\times \frac{3}{2}x+\frac{1}{2}\left(-\frac{2}{3}\right)=\frac{1}{4}\left(\frac{2}{3}x+\frac{1}{2}\right)
Use the distributive property to multiply \frac{1}{2} by \frac{3}{2}x-\frac{2}{3}.
\frac{1\times 3}{2\times 2}x+\frac{1}{2}\left(-\frac{2}{3}\right)=\frac{1}{4}\left(\frac{2}{3}x+\frac{1}{2}\right)
Multiply \frac{1}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}x+\frac{1}{2}\left(-\frac{2}{3}\right)=\frac{1}{4}\left(\frac{2}{3}x+\frac{1}{2}\right)
Do the multiplications in the fraction \frac{1\times 3}{2\times 2}.
\frac{3}{4}x+\frac{1\left(-2\right)}{2\times 3}=\frac{1}{4}\left(\frac{2}{3}x+\frac{1}{2}\right)
Multiply \frac{1}{2} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}x+\frac{-2}{6}=\frac{1}{4}\left(\frac{2}{3}x+\frac{1}{2}\right)
Do the multiplications in the fraction \frac{1\left(-2\right)}{2\times 3}.
\frac{3}{4}x-\frac{1}{3}=\frac{1}{4}\left(\frac{2}{3}x+\frac{1}{2}\right)
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
\frac{3}{4}x-\frac{1}{3}=\frac{1}{4}\times \frac{2}{3}x+\frac{1}{4}\times \frac{1}{2}
Use the distributive property to multiply \frac{1}{4} by \frac{2}{3}x+\frac{1}{2}.
\frac{3}{4}x-\frac{1}{3}=\frac{1\times 2}{4\times 3}x+\frac{1}{4}\times \frac{1}{2}
Multiply \frac{1}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}x-\frac{1}{3}=\frac{2}{12}x+\frac{1}{4}\times \frac{1}{2}
Do the multiplications in the fraction \frac{1\times 2}{4\times 3}.
\frac{3}{4}x-\frac{1}{3}=\frac{1}{6}x+\frac{1}{4}\times \frac{1}{2}
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
\frac{3}{4}x-\frac{1}{3}=\frac{1}{6}x+\frac{1\times 1}{4\times 2}
Multiply \frac{1}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}x-\frac{1}{3}=\frac{1}{6}x+\frac{1}{8}
Do the multiplications in the fraction \frac{1\times 1}{4\times 2}.
\frac{3}{4}x-\frac{1}{3}-\frac{1}{6}x=\frac{1}{8}
Subtract \frac{1}{6}x from both sides.
\frac{7}{12}x-\frac{1}{3}=\frac{1}{8}
Combine \frac{3}{4}x and -\frac{1}{6}x to get \frac{7}{12}x.
\frac{7}{12}x=\frac{1}{8}+\frac{1}{3}
Add \frac{1}{3} to both sides.
\frac{7}{12}x=\frac{3}{24}+\frac{8}{24}
Least common multiple of 8 and 3 is 24. Convert \frac{1}{8} and \frac{1}{3} to fractions with denominator 24.
\frac{7}{12}x=\frac{3+8}{24}
Since \frac{3}{24} and \frac{8}{24} have the same denominator, add them by adding their numerators.
\frac{7}{12}x=\frac{11}{24}
Add 3 and 8 to get 11.
x=\frac{11}{24}\times \frac{12}{7}
Multiply both sides by \frac{12}{7}, the reciprocal of \frac{7}{12}.
x=\frac{11\times 12}{24\times 7}
Multiply \frac{11}{24} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
x=\frac{132}{168}
Do the multiplications in the fraction \frac{11\times 12}{24\times 7}.
x=\frac{11}{14}
Reduce the fraction \frac{132}{168} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}