Evaluate
\frac{39}{k}
Differentiate w.r.t. k
-\frac{39}{k^{2}}
Share
Copied to clipboard
\frac{1}{2}\times 13\times \frac{6}{k}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 13 is 13.
\frac{13}{2}\times \frac{6}{k}
Multiply \frac{1}{2} and 13 to get \frac{13}{2}.
\frac{13\times 6}{2k}
Multiply \frac{13}{2} times \frac{6}{k} by multiplying numerator times numerator and denominator times denominator.
\frac{3\times 13}{k}
Cancel out 2 in both numerator and denominator.
\frac{39}{k}
Multiply 3 and 13 to get 39.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{2}\times 13\times \frac{6}{k})
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 13 is 13.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{13}{2}\times \frac{6}{k})
Multiply \frac{1}{2} and 13 to get \frac{13}{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{13\times 6}{2k})
Multiply \frac{13}{2} times \frac{6}{k} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{3\times 13}{k})
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{39}{k})
Multiply 3 and 13 to get 39.
-39k^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-39k^{-2}
Subtract 1 from -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}