Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. k
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}\times 13\times \frac{6}{k}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 13 is 13.
\frac{13}{2}\times \frac{6}{k}
Multiply \frac{1}{2} and 13 to get \frac{13}{2}.
\frac{13\times 6}{2k}
Multiply \frac{13}{2} times \frac{6}{k} by multiplying numerator times numerator and denominator times denominator.
\frac{3\times 13}{k}
Cancel out 2 in both numerator and denominator.
\frac{39}{k}
Multiply 3 and 13 to get 39.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{2}\times 13\times \frac{6}{k})
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 13 is 13.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{13}{2}\times \frac{6}{k})
Multiply \frac{1}{2} and 13 to get \frac{13}{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{13\times 6}{2k})
Multiply \frac{13}{2} times \frac{6}{k} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{3\times 13}{k})
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{39}{k})
Multiply 3 and 13 to get 39.
-39k^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-39k^{-2}
Subtract 1 from -1.