Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{47}{2}\left(-x^{2}+2.25^{2}\right)=8.4
Multiply \frac{1}{2} and 47 to get \frac{47}{2}.
\frac{47}{2}\left(-x^{2}+5.0625\right)=8.4
Calculate 2.25 to the power of 2 and get 5.0625.
\frac{47}{2}\left(-x^{2}\right)+\frac{3807}{32}=8.4
Use the distributive property to multiply \frac{47}{2} by -x^{2}+5.0625.
\frac{47}{2}\left(-x^{2}\right)=8.4-\frac{3807}{32}
Subtract \frac{3807}{32} from both sides.
\frac{47}{2}\left(-x^{2}\right)=-\frac{17691}{160}
Subtract \frac{3807}{32} from 8.4 to get -\frac{17691}{160}.
-x^{2}=-\frac{17691}{160}\times \frac{2}{47}
Multiply both sides by \frac{2}{47}, the reciprocal of \frac{47}{2}.
-x^{2}=-\frac{17691}{3760}
Multiply -\frac{17691}{160} and \frac{2}{47} to get -\frac{17691}{3760}.
x^{2}=\frac{-\frac{17691}{3760}}{-1}
Divide both sides by -1.
x^{2}=\frac{-17691}{3760\left(-1\right)}
Express \frac{-\frac{17691}{3760}}{-1} as a single fraction.
x^{2}=\frac{-17691}{-3760}
Multiply 3760 and -1 to get -3760.
x^{2}=\frac{17691}{3760}
Fraction \frac{-17691}{-3760} can be simplified to \frac{17691}{3760} by removing the negative sign from both the numerator and the denominator.
x=\frac{\sqrt{4157385}}{940} x=-\frac{\sqrt{4157385}}{940}
Take the square root of both sides of the equation.
\frac{47}{2}\left(-x^{2}+2.25^{2}\right)=8.4
Multiply \frac{1}{2} and 47 to get \frac{47}{2}.
\frac{47}{2}\left(-x^{2}+5.0625\right)=8.4
Calculate 2.25 to the power of 2 and get 5.0625.
\frac{47}{2}\left(-x^{2}\right)+\frac{3807}{32}=8.4
Use the distributive property to multiply \frac{47}{2} by -x^{2}+5.0625.
\frac{47}{2}\left(-x^{2}\right)+\frac{3807}{32}-8.4=0
Subtract 8.4 from both sides.
\frac{47}{2}\left(-x^{2}\right)+\frac{17691}{160}=0
Subtract 8.4 from \frac{3807}{32} to get \frac{17691}{160}.
-\frac{47}{2}x^{2}+\frac{17691}{160}=0
Multiply \frac{47}{2} and -1 to get -\frac{47}{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{47}{2}\right)\times \frac{17691}{160}}}{2\left(-\frac{47}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{47}{2} for a, 0 for b, and \frac{17691}{160} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{47}{2}\right)\times \frac{17691}{160}}}{2\left(-\frac{47}{2}\right)}
Square 0.
x=\frac{0±\sqrt{94\times \frac{17691}{160}}}{2\left(-\frac{47}{2}\right)}
Multiply -4 times -\frac{47}{2}.
x=\frac{0±\sqrt{\frac{831477}{80}}}{2\left(-\frac{47}{2}\right)}
Multiply 94 times \frac{17691}{160}.
x=\frac{0±\frac{\sqrt{4157385}}{20}}{2\left(-\frac{47}{2}\right)}
Take the square root of \frac{831477}{80}.
x=\frac{0±\frac{\sqrt{4157385}}{20}}{-47}
Multiply 2 times -\frac{47}{2}.
x=-\frac{\sqrt{4157385}}{940}
Now solve the equation x=\frac{0±\frac{\sqrt{4157385}}{20}}{-47} when ± is plus.
x=\frac{\sqrt{4157385}}{940}
Now solve the equation x=\frac{0±\frac{\sqrt{4157385}}{20}}{-47} when ± is minus.
x=-\frac{\sqrt{4157385}}{940} x=\frac{\sqrt{4157385}}{940}
The equation is now solved.