Solve for x
x=-142.128
Graph
Share
Copied to clipboard
\frac{1}{2}\times \frac{7}{25}\times 4=0.28\times 9.8\times 52+x
Convert decimal number 0.28 to fraction \frac{28}{100}. Reduce the fraction \frac{28}{100} to lowest terms by extracting and canceling out 4.
\frac{1\times 7}{2\times 25}\times 4=0.28\times 9.8\times 52+x
Multiply \frac{1}{2} times \frac{7}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{50}\times 4=0.28\times 9.8\times 52+x
Do the multiplications in the fraction \frac{1\times 7}{2\times 25}.
\frac{7\times 4}{50}=0.28\times 9.8\times 52+x
Express \frac{7}{50}\times 4 as a single fraction.
\frac{28}{50}=0.28\times 9.8\times 52+x
Multiply 7 and 4 to get 28.
\frac{14}{25}=0.28\times 9.8\times 52+x
Reduce the fraction \frac{28}{50} to lowest terms by extracting and canceling out 2.
\frac{14}{25}=2.744\times 52+x
Multiply 0.28 and 9.8 to get 2.744.
\frac{14}{25}=142.688+x
Multiply 2.744 and 52 to get 142.688.
142.688+x=\frac{14}{25}
Swap sides so that all variable terms are on the left hand side.
x=\frac{14}{25}-142.688
Subtract 142.688 from both sides.
x=\frac{14}{25}-\frac{17836}{125}
Convert decimal number 142.688 to fraction \frac{142688}{1000}. Reduce the fraction \frac{142688}{1000} to lowest terms by extracting and canceling out 8.
x=\frac{70}{125}-\frac{17836}{125}
Least common multiple of 25 and 125 is 125. Convert \frac{14}{25} and \frac{17836}{125} to fractions with denominator 125.
x=\frac{70-17836}{125}
Since \frac{70}{125} and \frac{17836}{125} have the same denominator, subtract them by subtracting their numerators.
x=-\frac{17766}{125}
Subtract 17836 from 70 to get -17766.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}