Solve for x
x=12
x=2
Graph
Share
Copied to clipboard
\left(3-\frac{1}{2}x\right)\left(8-x\right)=12
Use the distributive property to multiply \frac{1}{2} by 6-x.
24-7x+\frac{1}{2}x^{2}=12
Use the distributive property to multiply 3-\frac{1}{2}x by 8-x and combine like terms.
24-7x+\frac{1}{2}x^{2}-12=0
Subtract 12 from both sides.
12-7x+\frac{1}{2}x^{2}=0
Subtract 12 from 24 to get 12.
\frac{1}{2}x^{2}-7x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times \frac{1}{2}\times 12}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -7 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times \frac{1}{2}\times 12}}{2\times \frac{1}{2}}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-2\times 12}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\times \frac{1}{2}}
Multiply -2 times 12.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\times \frac{1}{2}}
Add 49 to -24.
x=\frac{-\left(-7\right)±5}{2\times \frac{1}{2}}
Take the square root of 25.
x=\frac{7±5}{2\times \frac{1}{2}}
The opposite of -7 is 7.
x=\frac{7±5}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{12}{1}
Now solve the equation x=\frac{7±5}{1} when ± is plus. Add 7 to 5.
x=12
Divide 12 by 1.
x=\frac{2}{1}
Now solve the equation x=\frac{7±5}{1} when ± is minus. Subtract 5 from 7.
x=2
Divide 2 by 1.
x=12 x=2
The equation is now solved.
\left(3-\frac{1}{2}x\right)\left(8-x\right)=12
Use the distributive property to multiply \frac{1}{2} by 6-x.
24-7x+\frac{1}{2}x^{2}=12
Use the distributive property to multiply 3-\frac{1}{2}x by 8-x and combine like terms.
-7x+\frac{1}{2}x^{2}=12-24
Subtract 24 from both sides.
-7x+\frac{1}{2}x^{2}=-12
Subtract 24 from 12 to get -12.
\frac{1}{2}x^{2}-7x=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}-7x}{\frac{1}{2}}=-\frac{12}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{7}{\frac{1}{2}}\right)x=-\frac{12}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-14x=-\frac{12}{\frac{1}{2}}
Divide -7 by \frac{1}{2} by multiplying -7 by the reciprocal of \frac{1}{2}.
x^{2}-14x=-24
Divide -12 by \frac{1}{2} by multiplying -12 by the reciprocal of \frac{1}{2}.
x^{2}-14x+\left(-7\right)^{2}=-24+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-24+49
Square -7.
x^{2}-14x+49=25
Add -24 to 49.
\left(x-7\right)^{2}=25
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-7=5 x-7=-5
Simplify.
x=12 x=2
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}