Solve for x (complex solution)
x=3+3\sqrt{2}i\approx 3+4.242640687i
x=-3\sqrt{2}i+3\approx 3-4.242640687i
Graph
Share
Copied to clipboard
\frac{1}{2}\left(117+x^{2}\right)-18=x\left(9-x\right)
Add 36 and 81 to get 117.
\frac{117}{2}+\frac{1}{2}x^{2}-18=x\left(9-x\right)
Use the distributive property to multiply \frac{1}{2} by 117+x^{2}.
\frac{81}{2}+\frac{1}{2}x^{2}=x\left(9-x\right)
Subtract 18 from \frac{117}{2} to get \frac{81}{2}.
\frac{81}{2}+\frac{1}{2}x^{2}=9x-x^{2}
Use the distributive property to multiply x by 9-x.
\frac{81}{2}+\frac{1}{2}x^{2}-9x=-x^{2}
Subtract 9x from both sides.
\frac{81}{2}+\frac{1}{2}x^{2}-9x+x^{2}=0
Add x^{2} to both sides.
\frac{81}{2}+\frac{3}{2}x^{2}-9x=0
Combine \frac{1}{2}x^{2} and x^{2} to get \frac{3}{2}x^{2}.
\frac{3}{2}x^{2}-9x+\frac{81}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times \frac{3}{2}\times \frac{81}{2}}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, -9 for b, and \frac{81}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times \frac{3}{2}\times \frac{81}{2}}}{2\times \frac{3}{2}}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-6\times \frac{81}{2}}}{2\times \frac{3}{2}}
Multiply -4 times \frac{3}{2}.
x=\frac{-\left(-9\right)±\sqrt{81-243}}{2\times \frac{3}{2}}
Multiply -6 times \frac{81}{2}.
x=\frac{-\left(-9\right)±\sqrt{-162}}{2\times \frac{3}{2}}
Add 81 to -243.
x=\frac{-\left(-9\right)±9\sqrt{2}i}{2\times \frac{3}{2}}
Take the square root of -162.
x=\frac{9±9\sqrt{2}i}{2\times \frac{3}{2}}
The opposite of -9 is 9.
x=\frac{9±9\sqrt{2}i}{3}
Multiply 2 times \frac{3}{2}.
x=\frac{9+9\sqrt{2}i}{3}
Now solve the equation x=\frac{9±9\sqrt{2}i}{3} when ± is plus. Add 9 to 9i\sqrt{2}.
x=3+3\sqrt{2}i
Divide 9+9i\sqrt{2} by 3.
x=\frac{-9\sqrt{2}i+9}{3}
Now solve the equation x=\frac{9±9\sqrt{2}i}{3} when ± is minus. Subtract 9i\sqrt{2} from 9.
x=-3\sqrt{2}i+3
Divide 9-9i\sqrt{2} by 3.
x=3+3\sqrt{2}i x=-3\sqrt{2}i+3
The equation is now solved.
\frac{1}{2}\left(117+x^{2}\right)-18=x\left(9-x\right)
Add 36 and 81 to get 117.
\frac{117}{2}+\frac{1}{2}x^{2}-18=x\left(9-x\right)
Use the distributive property to multiply \frac{1}{2} by 117+x^{2}.
\frac{81}{2}+\frac{1}{2}x^{2}=x\left(9-x\right)
Subtract 18 from \frac{117}{2} to get \frac{81}{2}.
\frac{81}{2}+\frac{1}{2}x^{2}=9x-x^{2}
Use the distributive property to multiply x by 9-x.
\frac{81}{2}+\frac{1}{2}x^{2}-9x=-x^{2}
Subtract 9x from both sides.
\frac{81}{2}+\frac{1}{2}x^{2}-9x+x^{2}=0
Add x^{2} to both sides.
\frac{81}{2}+\frac{3}{2}x^{2}-9x=0
Combine \frac{1}{2}x^{2} and x^{2} to get \frac{3}{2}x^{2}.
\frac{3}{2}x^{2}-9x=-\frac{81}{2}
Subtract \frac{81}{2} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{3}{2}x^{2}-9x}{\frac{3}{2}}=-\frac{\frac{81}{2}}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{9}{\frac{3}{2}}\right)x=-\frac{\frac{81}{2}}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
x^{2}-6x=-\frac{\frac{81}{2}}{\frac{3}{2}}
Divide -9 by \frac{3}{2} by multiplying -9 by the reciprocal of \frac{3}{2}.
x^{2}-6x=-27
Divide -\frac{81}{2} by \frac{3}{2} by multiplying -\frac{81}{2} by the reciprocal of \frac{3}{2}.
x^{2}-6x+\left(-3\right)^{2}=-27+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-27+9
Square -3.
x^{2}-6x+9=-18
Add -27 to 9.
\left(x-3\right)^{2}=-18
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-18}
Take the square root of both sides of the equation.
x-3=3\sqrt{2}i x-3=-3\sqrt{2}i
Simplify.
x=3+3\sqrt{2}i x=-3\sqrt{2}i+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}