Evaluate
-\frac{5}{9}\approx -0.555555556
Factor
-\frac{5}{9} = -0.5555555555555556
Share
Copied to clipboard
\frac{\frac{1}{2}\left(-\frac{2}{3}\right)\times 5}{-\frac{1}{6}\left(-18\right)}
Divide \frac{\frac{1}{2}\left(-\frac{2}{3}\right)}{-\frac{1}{6}} by -\frac{18}{5} by multiplying \frac{\frac{1}{2}\left(-\frac{2}{3}\right)}{-\frac{1}{6}} by the reciprocal of -\frac{18}{5}.
\frac{\frac{1\left(-2\right)}{2\times 3}\times 5}{-\frac{1}{6}\left(-18\right)}
Multiply \frac{1}{2} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-2}{6}\times 5}{-\frac{1}{6}\left(-18\right)}
Do the multiplications in the fraction \frac{1\left(-2\right)}{2\times 3}.
\frac{-\frac{1}{3}\times 5}{-\frac{1}{6}\left(-18\right)}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{-5}{3}}{-\frac{1}{6}\left(-18\right)}
Express -\frac{1}{3}\times 5 as a single fraction.
\frac{-\frac{5}{3}}{-\frac{1}{6}\left(-18\right)}
Fraction \frac{-5}{3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
\frac{-\frac{5}{3}}{\frac{-\left(-18\right)}{6}}
Express -\frac{1}{6}\left(-18\right) as a single fraction.
\frac{-\frac{5}{3}}{\frac{18}{6}}
Multiply -1 and -18 to get 18.
\frac{-\frac{5}{3}}{3}
Divide 18 by 6 to get 3.
\frac{-5}{3\times 3}
Express \frac{-\frac{5}{3}}{3} as a single fraction.
\frac{-5}{9}
Multiply 3 and 3 to get 9.
-\frac{5}{9}
Fraction \frac{-5}{9} can be rewritten as -\frac{5}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}