Evaluate
\frac{187}{2400}\approx 0.077916667
Factor
\frac{11 \cdot 17}{2 ^ {5} \cdot 3 \cdot 5 ^ {2}} = 0.07791666666666666
Share
Copied to clipboard
\frac{1}{2}\left(\frac{1}{5}+\frac{1\times 1}{2\times 8}\right)-\frac{1}{5}\left(\frac{1}{6}+\frac{1}{2}\times \frac{1}{5}\right)
Multiply \frac{1}{2} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}\left(\frac{1}{5}+\frac{1}{16}\right)-\frac{1}{5}\left(\frac{1}{6}+\frac{1}{2}\times \frac{1}{5}\right)
Do the multiplications in the fraction \frac{1\times 1}{2\times 8}.
\frac{1}{2}\left(\frac{16}{80}+\frac{5}{80}\right)-\frac{1}{5}\left(\frac{1}{6}+\frac{1}{2}\times \frac{1}{5}\right)
Least common multiple of 5 and 16 is 80. Convert \frac{1}{5} and \frac{1}{16} to fractions with denominator 80.
\frac{1}{2}\times \frac{16+5}{80}-\frac{1}{5}\left(\frac{1}{6}+\frac{1}{2}\times \frac{1}{5}\right)
Since \frac{16}{80} and \frac{5}{80} have the same denominator, add them by adding their numerators.
\frac{1}{2}\times \frac{21}{80}-\frac{1}{5}\left(\frac{1}{6}+\frac{1}{2}\times \frac{1}{5}\right)
Add 16 and 5 to get 21.
\frac{1\times 21}{2\times 80}-\frac{1}{5}\left(\frac{1}{6}+\frac{1}{2}\times \frac{1}{5}\right)
Multiply \frac{1}{2} times \frac{21}{80} by multiplying numerator times numerator and denominator times denominator.
\frac{21}{160}-\frac{1}{5}\left(\frac{1}{6}+\frac{1}{2}\times \frac{1}{5}\right)
Do the multiplications in the fraction \frac{1\times 21}{2\times 80}.
\frac{21}{160}-\frac{1}{5}\left(\frac{1}{6}+\frac{1\times 1}{2\times 5}\right)
Multiply \frac{1}{2} times \frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{21}{160}-\frac{1}{5}\left(\frac{1}{6}+\frac{1}{10}\right)
Do the multiplications in the fraction \frac{1\times 1}{2\times 5}.
\frac{21}{160}-\frac{1}{5}\left(\frac{5}{30}+\frac{3}{30}\right)
Least common multiple of 6 and 10 is 30. Convert \frac{1}{6} and \frac{1}{10} to fractions with denominator 30.
\frac{21}{160}-\frac{1}{5}\times \frac{5+3}{30}
Since \frac{5}{30} and \frac{3}{30} have the same denominator, add them by adding their numerators.
\frac{21}{160}-\frac{1}{5}\times \frac{8}{30}
Add 5 and 3 to get 8.
\frac{21}{160}-\frac{1}{5}\times \frac{4}{15}
Reduce the fraction \frac{8}{30} to lowest terms by extracting and canceling out 2.
\frac{21}{160}-\frac{1\times 4}{5\times 15}
Multiply \frac{1}{5} times \frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{21}{160}-\frac{4}{75}
Do the multiplications in the fraction \frac{1\times 4}{5\times 15}.
\frac{315}{2400}-\frac{128}{2400}
Least common multiple of 160 and 75 is 2400. Convert \frac{21}{160} and \frac{4}{75} to fractions with denominator 2400.
\frac{315-128}{2400}
Since \frac{315}{2400} and \frac{128}{2400} have the same denominator, subtract them by subtracting their numerators.
\frac{187}{2400}
Subtract 128 from 315 to get 187.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}