Evaluate
\frac{29}{20}=1.45
Factor
\frac{29}{2 ^ {2} \cdot 5} = 1\frac{9}{20} = 1.45
Share
Copied to clipboard
\frac{1}{2}\left(-\frac{5}{6}\right)-\frac{-10}{6}+\frac{\frac{1}{2}}{\frac{15}{6}}
Fraction \frac{-5}{6} can be rewritten as -\frac{5}{6} by extracting the negative sign.
\frac{1\left(-5\right)}{2\times 6}-\frac{-10}{6}+\frac{\frac{1}{2}}{\frac{15}{6}}
Multiply \frac{1}{2} times -\frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{-5}{12}-\frac{-10}{6}+\frac{\frac{1}{2}}{\frac{15}{6}}
Do the multiplications in the fraction \frac{1\left(-5\right)}{2\times 6}.
-\frac{5}{12}-\frac{-10}{6}+\frac{\frac{1}{2}}{\frac{15}{6}}
Fraction \frac{-5}{12} can be rewritten as -\frac{5}{12} by extracting the negative sign.
-\frac{5}{12}-\left(-\frac{5}{3}\right)+\frac{\frac{1}{2}}{\frac{15}{6}}
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
-\frac{5}{12}+\frac{5}{3}+\frac{\frac{1}{2}}{\frac{15}{6}}
The opposite of -\frac{5}{3} is \frac{5}{3}.
-\frac{5}{12}+\frac{20}{12}+\frac{\frac{1}{2}}{\frac{15}{6}}
Least common multiple of 12 and 3 is 12. Convert -\frac{5}{12} and \frac{5}{3} to fractions with denominator 12.
\frac{-5+20}{12}+\frac{\frac{1}{2}}{\frac{15}{6}}
Since -\frac{5}{12} and \frac{20}{12} have the same denominator, add them by adding their numerators.
\frac{15}{12}+\frac{\frac{1}{2}}{\frac{15}{6}}
Add -5 and 20 to get 15.
\frac{5}{4}+\frac{\frac{1}{2}}{\frac{15}{6}}
Reduce the fraction \frac{15}{12} to lowest terms by extracting and canceling out 3.
\frac{5}{4}+\frac{6}{2\times 15}
Divide \frac{1}{2} by \frac{15}{6} by multiplying \frac{1}{2} by the reciprocal of \frac{15}{6}.
\frac{5}{4}+\frac{6}{30}
Multiply 2 and 15 to get 30.
\frac{5}{4}+\frac{1}{5}
Reduce the fraction \frac{6}{30} to lowest terms by extracting and canceling out 6.
\frac{25}{20}+\frac{4}{20}
Least common multiple of 4 and 5 is 20. Convert \frac{5}{4} and \frac{1}{5} to fractions with denominator 20.
\frac{25+4}{20}
Since \frac{25}{20} and \frac{4}{20} have the same denominator, add them by adding their numerators.
\frac{29}{20}
Add 25 and 4 to get 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}