Solve for n
n = \frac{\sqrt{17} + 1}{4} \approx 1.280776406
n=\frac{1-\sqrt{17}}{4}\approx -0.780776406
Share
Copied to clipboard
\frac{1}{2}n^{2}=\frac{1}{4}\left(n+2\right)
Cancel out \frac{22}{7} on both sides.
\frac{1}{2}n^{2}=\frac{1}{4}n+\frac{1}{2}
Use the distributive property to multiply \frac{1}{4} by n+2.
\frac{1}{2}n^{2}-\frac{1}{4}n=\frac{1}{2}
Subtract \frac{1}{4}n from both sides.
\frac{1}{2}n^{2}-\frac{1}{4}n-\frac{1}{2}=0
Subtract \frac{1}{2} from both sides.
n=\frac{-\left(-\frac{1}{4}\right)±\sqrt{\left(-\frac{1}{4}\right)^{2}-4\times \frac{1}{2}\left(-\frac{1}{2}\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -\frac{1}{4} for b, and -\frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-\frac{1}{4}\right)±\sqrt{\frac{1}{16}-4\times \frac{1}{2}\left(-\frac{1}{2}\right)}}{2\times \frac{1}{2}}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
n=\frac{-\left(-\frac{1}{4}\right)±\sqrt{\frac{1}{16}-2\left(-\frac{1}{2}\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
n=\frac{-\left(-\frac{1}{4}\right)±\sqrt{\frac{1}{16}+1}}{2\times \frac{1}{2}}
Multiply -2 times -\frac{1}{2}.
n=\frac{-\left(-\frac{1}{4}\right)±\sqrt{\frac{17}{16}}}{2\times \frac{1}{2}}
Add \frac{1}{16} to 1.
n=\frac{-\left(-\frac{1}{4}\right)±\frac{\sqrt{17}}{4}}{2\times \frac{1}{2}}
Take the square root of \frac{17}{16}.
n=\frac{\frac{1}{4}±\frac{\sqrt{17}}{4}}{2\times \frac{1}{2}}
The opposite of -\frac{1}{4} is \frac{1}{4}.
n=\frac{\frac{1}{4}±\frac{\sqrt{17}}{4}}{1}
Multiply 2 times \frac{1}{2}.
n=\frac{\sqrt{17}+1}{4}
Now solve the equation n=\frac{\frac{1}{4}±\frac{\sqrt{17}}{4}}{1} when ± is plus. Add \frac{1}{4} to \frac{\sqrt{17}}{4}.
n=\frac{1-\sqrt{17}}{4}
Now solve the equation n=\frac{\frac{1}{4}±\frac{\sqrt{17}}{4}}{1} when ± is minus. Subtract \frac{\sqrt{17}}{4} from \frac{1}{4}.
n=\frac{\sqrt{17}+1}{4} n=\frac{1-\sqrt{17}}{4}
The equation is now solved.
\frac{1}{2}n^{2}=\frac{1}{4}\left(n+2\right)
Cancel out \frac{22}{7} on both sides.
\frac{1}{2}n^{2}=\frac{1}{4}n+\frac{1}{2}
Use the distributive property to multiply \frac{1}{4} by n+2.
\frac{1}{2}n^{2}-\frac{1}{4}n=\frac{1}{2}
Subtract \frac{1}{4}n from both sides.
\frac{\frac{1}{2}n^{2}-\frac{1}{4}n}{\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}
Multiply both sides by 2.
n^{2}+\left(-\frac{\frac{1}{4}}{\frac{1}{2}}\right)n=\frac{\frac{1}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
n^{2}-\frac{1}{2}n=\frac{\frac{1}{2}}{\frac{1}{2}}
Divide -\frac{1}{4} by \frac{1}{2} by multiplying -\frac{1}{4} by the reciprocal of \frac{1}{2}.
n^{2}-\frac{1}{2}n=1
Divide \frac{1}{2} by \frac{1}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{2}.
n^{2}-\frac{1}{2}n+\left(-\frac{1}{4}\right)^{2}=1+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{1}{2}n+\frac{1}{16}=1+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{1}{2}n+\frac{1}{16}=\frac{17}{16}
Add 1 to \frac{1}{16}.
\left(n-\frac{1}{4}\right)^{2}=\frac{17}{16}
Factor n^{2}-\frac{1}{2}n+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
Take the square root of both sides of the equation.
n-\frac{1}{4}=\frac{\sqrt{17}}{4} n-\frac{1}{4}=-\frac{\sqrt{17}}{4}
Simplify.
n=\frac{\sqrt{17}+1}{4} n=\frac{1-\sqrt{17}}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}