Evaluate
\frac{5}{2}=2.5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
\frac{\sqrt{26}+\sqrt{6}}{2\times 2}\times \frac{\sqrt{26}-\sqrt{6}}{2}
Multiply \frac{1}{2} times \frac{\sqrt{26}+\sqrt{6}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\sqrt{26}+\sqrt{6}\right)\left(\sqrt{26}-\sqrt{6}\right)}{2\times 2\times 2}
Multiply \frac{\sqrt{26}+\sqrt{6}}{2\times 2} times \frac{\sqrt{26}-\sqrt{6}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\sqrt{26}\right)^{2}-\left(\sqrt{6}\right)^{2}}{2\times 2\times 2}
Consider \left(\sqrt{26}+\sqrt{6}\right)\left(\sqrt{26}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{26-\left(\sqrt{6}\right)^{2}}{2\times 2\times 2}
The square of \sqrt{26} is 26.
\frac{26-6}{2\times 2\times 2}
The square of \sqrt{6} is 6.
\frac{20}{2\times 2\times 2}
Subtract 6 from 26 to get 20.
\frac{20}{4\times 2}
Multiply 2 and 2 to get 4.
\frac{20}{8}
Multiply 4 and 2 to get 8.
\frac{5}{2}
Reduce the fraction \frac{20}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}