Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{26}+\sqrt{6}}{2\times 2}\times \frac{\sqrt{26}-\sqrt{6}}{2}
Multiply \frac{1}{2} times \frac{\sqrt{26}+\sqrt{6}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\sqrt{26}+\sqrt{6}\right)\left(\sqrt{26}-\sqrt{6}\right)}{2\times 2\times 2}
Multiply \frac{\sqrt{26}+\sqrt{6}}{2\times 2} times \frac{\sqrt{26}-\sqrt{6}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\sqrt{26}\right)^{2}-\left(\sqrt{6}\right)^{2}}{2\times 2\times 2}
Consider \left(\sqrt{26}+\sqrt{6}\right)\left(\sqrt{26}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{26-\left(\sqrt{6}\right)^{2}}{2\times 2\times 2}
The square of \sqrt{26} is 26.
\frac{26-6}{2\times 2\times 2}
The square of \sqrt{6} is 6.
\frac{20}{2\times 2\times 2}
Subtract 6 from 26 to get 20.
\frac{20}{4\times 2}
Multiply 2 and 2 to get 4.
\frac{20}{8}
Multiply 4 and 2 to get 8.
\frac{5}{2}
Reduce the fraction \frac{20}{8} to lowest terms by extracting and canceling out 4.