Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1}{2}\times 4\sqrt{3}}{3\sqrt{2}-\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\frac{4}{2}\sqrt{3}}{3\sqrt{2}-\sqrt{3}}
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{2\sqrt{3}}{3\sqrt{2}-\sqrt{3}}
Divide 4 by 2 to get 2.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{\left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right)}
Rationalize the denominator of \frac{2\sqrt{3}}{3\sqrt{2}-\sqrt{3}} by multiplying numerator and denominator by 3\sqrt{2}+\sqrt{3}.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{\left(3\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{9\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{9\times 2-\left(\sqrt{3}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{18-\left(\sqrt{3}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{18-3}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{15}
Subtract 3 from 18 to get 15.
\frac{6\sqrt{3}\sqrt{2}+2\left(\sqrt{3}\right)^{2}}{15}
Use the distributive property to multiply 2\sqrt{3} by 3\sqrt{2}+\sqrt{3}.
\frac{6\sqrt{6}+2\left(\sqrt{3}\right)^{2}}{15}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{6\sqrt{6}+2\times 3}{15}
The square of \sqrt{3} is 3.
\frac{6\sqrt{6}+6}{15}
Multiply 2 and 3 to get 6.