Evaluate
\frac{15\sqrt{6}-6\sqrt{15}}{2}\approx 6.752223032
Factor
\frac{3 \sqrt{10} {(\sqrt{15} - \sqrt{6})}}{2} = 6.752223032251587
Share
Copied to clipboard
\frac{1}{2}\sqrt{10}\times 3\sqrt{15}+\frac{1}{2}\sqrt{10}\left(-3\right)\sqrt{6}
Use the distributive property to multiply \frac{1}{2}\sqrt{10} by 3\sqrt{15}-3\sqrt{6}.
\frac{3}{2}\sqrt{10}\sqrt{15}+\frac{1}{2}\sqrt{10}\left(-3\right)\sqrt{6}
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}\sqrt{150}+\frac{1}{2}\sqrt{10}\left(-3\right)\sqrt{6}
To multiply \sqrt{10} and \sqrt{15}, multiply the numbers under the square root.
\frac{3}{2}\sqrt{150}+\frac{-3}{2}\sqrt{10}\sqrt{6}
Multiply \frac{1}{2} and -3 to get \frac{-3}{2}.
\frac{3}{2}\sqrt{150}-\frac{3}{2}\sqrt{10}\sqrt{6}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{3}{2}\sqrt{150}-\frac{3}{2}\sqrt{60}
To multiply \sqrt{10} and \sqrt{6}, multiply the numbers under the square root.
\frac{3}{2}\times 5\sqrt{6}-\frac{3}{2}\sqrt{60}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
\frac{3\times 5}{2}\sqrt{6}-\frac{3}{2}\sqrt{60}
Express \frac{3}{2}\times 5 as a single fraction.
\frac{15}{2}\sqrt{6}-\frac{3}{2}\sqrt{60}
Multiply 3 and 5 to get 15.
\frac{15}{2}\sqrt{6}-\frac{3}{2}\times 2\sqrt{15}
Factor 60=2^{2}\times 15. Rewrite the square root of the product \sqrt{2^{2}\times 15} as the product of square roots \sqrt{2^{2}}\sqrt{15}. Take the square root of 2^{2}.
\frac{15}{2}\sqrt{6}-3\sqrt{15}
Cancel out 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}