Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1}{2}\times \frac{\sqrt{5}}{\sqrt{3}}}{\sqrt{\frac{10}{27}}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\frac{1}{2}\times \frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{10}{27}}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{1}{2}\times \frac{\sqrt{5}\sqrt{3}}{3}}{\sqrt{\frac{10}{27}}}
The square of \sqrt{3} is 3.
\frac{\frac{1}{2}\times \frac{\sqrt{15}}{3}}{\sqrt{\frac{10}{27}}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{\sqrt{15}}{2\times 3}}{\sqrt{\frac{10}{27}}}
Multiply \frac{1}{2} times \frac{\sqrt{15}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\sqrt{15}}{2\times 3}}{\frac{\sqrt{10}}{\sqrt{27}}}
Rewrite the square root of the division \sqrt{\frac{10}{27}} as the division of square roots \frac{\sqrt{10}}{\sqrt{27}}.
\frac{\frac{\sqrt{15}}{2\times 3}}{\frac{\sqrt{10}}{3\sqrt{3}}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\frac{\sqrt{15}}{2\times 3}}{\frac{\sqrt{10}\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{10}}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\sqrt{15}}{2\times 3}}{\frac{\sqrt{10}\sqrt{3}}{3\times 3}}
The square of \sqrt{3} is 3.
\frac{\frac{\sqrt{15}}{2\times 3}}{\frac{\sqrt{30}}{3\times 3}}
To multiply \sqrt{10} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{\sqrt{15}}{2\times 3}}{\frac{\sqrt{30}}{9}}
Multiply 3 and 3 to get 9.
\frac{\sqrt{15}\times 9}{2\times 3\sqrt{30}}
Divide \frac{\sqrt{15}}{2\times 3} by \frac{\sqrt{30}}{9} by multiplying \frac{\sqrt{15}}{2\times 3} by the reciprocal of \frac{\sqrt{30}}{9}.
\frac{3\sqrt{15}}{2\sqrt{30}}
Cancel out 3 in both numerator and denominator.
\frac{3\sqrt{15}\sqrt{30}}{2\left(\sqrt{30}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{15}}{2\sqrt{30}} by multiplying numerator and denominator by \sqrt{30}.
\frac{3\sqrt{15}\sqrt{30}}{2\times 30}
The square of \sqrt{30} is 30.
\frac{3\sqrt{15}\sqrt{15}\sqrt{2}}{2\times 30}
Factor 30=15\times 2. Rewrite the square root of the product \sqrt{15\times 2} as the product of square roots \sqrt{15}\sqrt{2}.
\frac{3\times 15\sqrt{2}}{2\times 30}
Multiply \sqrt{15} and \sqrt{15} to get 15.
\frac{3\times 15\sqrt{2}}{60}
Multiply 2 and 30 to get 60.
\frac{45\sqrt{2}}{60}
Multiply 3 and 15 to get 45.
\frac{3}{4}\sqrt{2}
Divide 45\sqrt{2} by 60 to get \frac{3}{4}\sqrt{2}.