Solve for S
\left\{\begin{matrix}S=-\frac{2V∂}{d\sigma }\text{, }&∂\neq 0\text{ and }V\neq 0\text{ and }d\neq 0\text{ and }\sigma \neq 0\\S\neq 0\text{, }&\left(∂=0\text{ or }V=0\right)\text{ and }\sigma =0\text{ and }d\neq 0\end{matrix}\right.
Solve for V
\left\{\begin{matrix}V=-\frac{Sd\sigma }{2∂}\text{, }&∂\neq 0\text{ and }S\neq 0\text{ and }d\neq 0\\V\in \mathrm{R}\text{, }&\sigma =0\text{ and }∂=0\text{ and }S\neq 0\text{ and }d\neq 0\end{matrix}\right.
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { 2 } \sigma + \frac { \partial V } { S d } = 0
Share
Copied to clipboard
\frac{1}{2}\sigma \times 2Sd+2∂V=0
Variable S cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2Sd, the least common multiple of 2,Sd.
\sigma Sd+2∂V=0
Multiply \frac{1}{2} and 2 to get 1.
\sigma Sd=-2∂V
Subtract 2∂V from both sides. Anything subtracted from zero gives its negation.
d\sigma S=-2V∂
The equation is in standard form.
\frac{d\sigma S}{d\sigma }=-\frac{2V∂}{d\sigma }
Divide both sides by \sigma d.
S=-\frac{2V∂}{d\sigma }
Dividing by \sigma d undoes the multiplication by \sigma d.
S=-\frac{2V∂}{d\sigma }\text{, }S\neq 0
Variable S cannot be equal to 0.
\frac{1}{2}\sigma \times 2Sd+2∂V=0
Multiply both sides of the equation by 2Sd, the least common multiple of 2,Sd.
\sigma Sd+2∂V=0
Multiply \frac{1}{2} and 2 to get 1.
2∂V=-\sigma Sd
Subtract \sigma Sd from both sides. Anything subtracted from zero gives its negation.
2V∂=-Sd\sigma
Reorder the terms.
2∂V=-Sd\sigma
The equation is in standard form.
\frac{2∂V}{2∂}=-\frac{Sd\sigma }{2∂}
Divide both sides by 2∂.
V=-\frac{Sd\sigma }{2∂}
Dividing by 2∂ undoes the multiplication by 2∂.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}