Evaluate
\frac{\left(2-a\right)\left(4-3a\right)}{2\left(1-a\right)}
Expand
\frac{3a^{2}-10a+8}{2\left(1-a\right)}
Share
Copied to clipboard
\frac{1}{2}\times \frac{8-4a-6a+3a^{2}}{1-a}
Apply the distributive property by multiplying each term of 4-3a by each term of 2-a.
\frac{1}{2}\times \frac{8-10a+3a^{2}}{1-a}
Combine -4a and -6a to get -10a.
\frac{8-10a+3a^{2}}{2\left(1-a\right)}
Multiply \frac{1}{2} times \frac{8-10a+3a^{2}}{1-a} by multiplying numerator times numerator and denominator times denominator.
\frac{8-10a+3a^{2}}{2-2a}
Use the distributive property to multiply 2 by 1-a.
\frac{1}{2}\times \frac{8-4a-6a+3a^{2}}{1-a}
Apply the distributive property by multiplying each term of 4-3a by each term of 2-a.
\frac{1}{2}\times \frac{8-10a+3a^{2}}{1-a}
Combine -4a and -6a to get -10a.
\frac{8-10a+3a^{2}}{2\left(1-a\right)}
Multiply \frac{1}{2} times \frac{8-10a+3a^{2}}{1-a} by multiplying numerator times numerator and denominator times denominator.
\frac{8-10a+3a^{2}}{2-2a}
Use the distributive property to multiply 2 by 1-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}