Solve for x
x = \frac{31}{9} = 3\frac{4}{9} \approx 3.444444444
Graph
Share
Copied to clipboard
\frac{1}{2}x+\frac{1}{2}-\frac{4}{3}\times \frac{1}{6}=2
Use the distributive property to multiply \frac{1}{2} by x+1.
\frac{1}{2}x+\frac{1}{2}-\frac{4\times 1}{3\times 6}=2
Multiply \frac{4}{3} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x+\frac{1}{2}-\frac{4}{18}=2
Do the multiplications in the fraction \frac{4\times 1}{3\times 6}.
\frac{1}{2}x+\frac{1}{2}-\frac{2}{9}=2
Reduce the fraction \frac{4}{18} to lowest terms by extracting and canceling out 2.
\frac{1}{2}x+\frac{9}{18}-\frac{4}{18}=2
Least common multiple of 2 and 9 is 18. Convert \frac{1}{2} and \frac{2}{9} to fractions with denominator 18.
\frac{1}{2}x+\frac{9-4}{18}=2
Since \frac{9}{18} and \frac{4}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x+\frac{5}{18}=2
Subtract 4 from 9 to get 5.
\frac{1}{2}x=2-\frac{5}{18}
Subtract \frac{5}{18} from both sides.
\frac{1}{2}x=\frac{36}{18}-\frac{5}{18}
Convert 2 to fraction \frac{36}{18}.
\frac{1}{2}x=\frac{36-5}{18}
Since \frac{36}{18} and \frac{5}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x=\frac{31}{18}
Subtract 5 from 36 to get 31.
x=\frac{31}{18}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x=\frac{31\times 2}{18}
Express \frac{31}{18}\times 2 as a single fraction.
x=\frac{62}{18}
Multiply 31 and 2 to get 62.
x=\frac{31}{9}
Reduce the fraction \frac{62}{18} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}