Solve for x
x=19
Graph
Share
Copied to clipboard
\frac{1}{2}x+\frac{1}{2}-\frac{\frac{4}{3}}{\frac{1}{6}}=2
Use the distributive property to multiply \frac{1}{2} by x+1.
\frac{1}{2}x+\frac{1}{2}-\frac{4}{3}\times 6=2
Divide \frac{4}{3} by \frac{1}{6} by multiplying \frac{4}{3} by the reciprocal of \frac{1}{6}.
\frac{1}{2}x+\frac{1}{2}-\frac{4\times 6}{3}=2
Express \frac{4}{3}\times 6 as a single fraction.
\frac{1}{2}x+\frac{1}{2}-\frac{24}{3}=2
Multiply 4 and 6 to get 24.
\frac{1}{2}x+\frac{1}{2}-8=2
Divide 24 by 3 to get 8.
\frac{1}{2}x+\frac{1}{2}-\frac{16}{2}=2
Convert 8 to fraction \frac{16}{2}.
\frac{1}{2}x+\frac{1-16}{2}=2
Since \frac{1}{2} and \frac{16}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x-\frac{15}{2}=2
Subtract 16 from 1 to get -15.
\frac{1}{2}x=2+\frac{15}{2}
Add \frac{15}{2} to both sides.
\frac{1}{2}x=\frac{4}{2}+\frac{15}{2}
Convert 2 to fraction \frac{4}{2}.
\frac{1}{2}x=\frac{4+15}{2}
Since \frac{4}{2} and \frac{15}{2} have the same denominator, add them by adding their numerators.
\frac{1}{2}x=\frac{19}{2}
Add 4 and 15 to get 19.
x=\frac{19}{2}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x=19
Cancel out 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}