Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Share
Copied to clipboard
\frac{1}{2}\times 4x+\frac{1}{2}\left(-1\right)-\frac{1}{9}\left(3x-6\right)=\frac{1}{4}\left(6x-1\right)
Use the distributive property to multiply \frac{1}{2} by 4x-1.
\frac{4}{2}x+\frac{1}{2}\left(-1\right)-\frac{1}{9}\left(3x-6\right)=\frac{1}{4}\left(6x-1\right)
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
2x+\frac{1}{2}\left(-1\right)-\frac{1}{9}\left(3x-6\right)=\frac{1}{4}\left(6x-1\right)
Divide 4 by 2 to get 2.
2x-\frac{1}{2}-\frac{1}{9}\left(3x-6\right)=\frac{1}{4}\left(6x-1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
2x-\frac{1}{2}-\frac{1}{9}\times 3x-\frac{1}{9}\left(-6\right)=\frac{1}{4}\left(6x-1\right)
Use the distributive property to multiply -\frac{1}{9} by 3x-6.
2x-\frac{1}{2}+\frac{-3}{9}x-\frac{1}{9}\left(-6\right)=\frac{1}{4}\left(6x-1\right)
Express -\frac{1}{9}\times 3 as a single fraction.
2x-\frac{1}{2}-\frac{1}{3}x-\frac{1}{9}\left(-6\right)=\frac{1}{4}\left(6x-1\right)
Reduce the fraction \frac{-3}{9} to lowest terms by extracting and canceling out 3.
2x-\frac{1}{2}-\frac{1}{3}x+\frac{-\left(-6\right)}{9}=\frac{1}{4}\left(6x-1\right)
Express -\frac{1}{9}\left(-6\right) as a single fraction.
2x-\frac{1}{2}-\frac{1}{3}x+\frac{6}{9}=\frac{1}{4}\left(6x-1\right)
Multiply -1 and -6 to get 6.
2x-\frac{1}{2}-\frac{1}{3}x+\frac{2}{3}=\frac{1}{4}\left(6x-1\right)
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
\frac{5}{3}x-\frac{1}{2}+\frac{2}{3}=\frac{1}{4}\left(6x-1\right)
Combine 2x and -\frac{1}{3}x to get \frac{5}{3}x.
\frac{5}{3}x-\frac{3}{6}+\frac{4}{6}=\frac{1}{4}\left(6x-1\right)
Least common multiple of 2 and 3 is 6. Convert -\frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{5}{3}x+\frac{-3+4}{6}=\frac{1}{4}\left(6x-1\right)
Since -\frac{3}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\frac{5}{3}x+\frac{1}{6}=\frac{1}{4}\left(6x-1\right)
Add -3 and 4 to get 1.
\frac{5}{3}x+\frac{1}{6}=\frac{1}{4}\times 6x+\frac{1}{4}\left(-1\right)
Use the distributive property to multiply \frac{1}{4} by 6x-1.
\frac{5}{3}x+\frac{1}{6}=\frac{6}{4}x+\frac{1}{4}\left(-1\right)
Multiply \frac{1}{4} and 6 to get \frac{6}{4}.
\frac{5}{3}x+\frac{1}{6}=\frac{3}{2}x+\frac{1}{4}\left(-1\right)
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{3}x+\frac{1}{6}=\frac{3}{2}x-\frac{1}{4}
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\frac{5}{3}x+\frac{1}{6}-\frac{3}{2}x=-\frac{1}{4}
Subtract \frac{3}{2}x from both sides.
\frac{1}{6}x+\frac{1}{6}=-\frac{1}{4}
Combine \frac{5}{3}x and -\frac{3}{2}x to get \frac{1}{6}x.
\frac{1}{6}x=-\frac{1}{4}-\frac{1}{6}
Subtract \frac{1}{6} from both sides.
\frac{1}{6}x=-\frac{3}{12}-\frac{2}{12}
Least common multiple of 4 and 6 is 12. Convert -\frac{1}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{1}{6}x=\frac{-3-2}{12}
Since -\frac{3}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}x=-\frac{5}{12}
Subtract 2 from -3 to get -5.
x=-\frac{5}{12}\times 6
Multiply both sides by 6, the reciprocal of \frac{1}{6}.
x=\frac{-5\times 6}{12}
Express -\frac{5}{12}\times 6 as a single fraction.
x=\frac{-30}{12}
Multiply -5 and 6 to get -30.
x=-\frac{5}{2}
Reduce the fraction \frac{-30}{12} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}