\frac { 1 } { 2 } \cdot ( 3,8 c m + 11,9 c m ) \cdot 4,2 c m
Evaluate
\frac{3297\left(cm\right)^{2}}{100}
Expand
\frac{3297\left(cm\right)^{2}}{100}
Share
Copied to clipboard
\frac{1}{2}\times 15,7cm\times 4,2cm
Combine 3,8cm and 11,9cm to get 15,7cm.
\frac{1}{2}\times \frac{157}{10}cm\times 4,2cm
Convert decimal number 15,7 to fraction \frac{157}{10}.
\frac{1\times 157}{2\times 10}cm\times 4,2cm
Multiply \frac{1}{2} times \frac{157}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{157}{20}cm\times 4,2cm
Do the multiplications in the fraction \frac{1\times 157}{2\times 10}.
\frac{157}{20}cm\times \frac{21}{5}cm
Convert decimal number 4,2 to fraction \frac{42}{10}. Reduce the fraction \frac{42}{10} to lowest terms by extracting and canceling out 2.
\frac{157\times 21}{20\times 5}cmcm
Multiply \frac{157}{20} times \frac{21}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3297}{100}cmcm
Do the multiplications in the fraction \frac{157\times 21}{20\times 5}.
\frac{3297}{100}c^{2}mm
Multiply c and c to get c^{2}.
\frac{3297}{100}c^{2}m^{2}
Multiply m and m to get m^{2}.
\frac{1}{2}\times 15,7cm\times 4,2cm
Combine 3,8cm and 11,9cm to get 15,7cm.
\frac{1}{2}\times \frac{157}{10}cm\times 4,2cm
Convert decimal number 15,7 to fraction \frac{157}{10}.
\frac{1\times 157}{2\times 10}cm\times 4,2cm
Multiply \frac{1}{2} times \frac{157}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{157}{20}cm\times 4,2cm
Do the multiplications in the fraction \frac{1\times 157}{2\times 10}.
\frac{157}{20}cm\times \frac{21}{5}cm
Convert decimal number 4,2 to fraction \frac{42}{10}. Reduce the fraction \frac{42}{10} to lowest terms by extracting and canceling out 2.
\frac{157\times 21}{20\times 5}cmcm
Multiply \frac{157}{20} times \frac{21}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3297}{100}cmcm
Do the multiplications in the fraction \frac{157\times 21}{20\times 5}.
\frac{3297}{100}c^{2}mm
Multiply c and c to get c^{2}.
\frac{3297}{100}c^{2}m^{2}
Multiply m and m to get m^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}