Solve for x (complex solution)
x=-\frac{i\times 723\sqrt{113}}{8000}\approx -0-0.960699428i
x=\frac{i\times 723\sqrt{113}}{8000}\approx 0.960699428i
Graph
Share
Copied to clipboard
\frac{1}{2}\times 22600\times 3.615^{2}+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Add 14000 and 8600 to get 22600.
11300\times 3.615^{2}+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Multiply \frac{1}{2} and 22600 to get 11300.
11300\times 13.068225+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Calculate 3.615 to the power of 2 and get 13.068225.
147670.9425+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Multiply 11300 and 13.068225 to get 147670.9425.
147670.9425+\frac{4}{25}\times 10^{6}x^{2}=0
Multiply \frac{1}{2} and 0.32 to get \frac{4}{25}.
147670.9425+\frac{4}{25}\times 1000000x^{2}=0
Calculate 10 to the power of 6 and get 1000000.
147670.9425+160000x^{2}=0
Multiply \frac{4}{25} and 1000000 to get 160000.
160000x^{2}=-147670.9425
Subtract 147670.9425 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-147670.9425}{160000}
Divide both sides by 160000.
x^{2}=\frac{-1476709425}{1600000000}
Expand \frac{-147670.9425}{160000} by multiplying both numerator and the denominator by 10000.
x^{2}=-\frac{59068377}{64000000}
Reduce the fraction \frac{-1476709425}{1600000000} to lowest terms by extracting and canceling out 25.
x=\frac{723\sqrt{113}i}{8000} x=-\frac{723\sqrt{113}i}{8000}
The equation is now solved.
\frac{1}{2}\times 22600\times 3.615^{2}+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Add 14000 and 8600 to get 22600.
11300\times 3.615^{2}+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Multiply \frac{1}{2} and 22600 to get 11300.
11300\times 13.068225+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Calculate 3.615 to the power of 2 and get 13.068225.
147670.9425+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Multiply 11300 and 13.068225 to get 147670.9425.
147670.9425+\frac{4}{25}\times 10^{6}x^{2}=0
Multiply \frac{1}{2} and 0.32 to get \frac{4}{25}.
147670.9425+\frac{4}{25}\times 1000000x^{2}=0
Calculate 10 to the power of 6 and get 1000000.
147670.9425+160000x^{2}=0
Multiply \frac{4}{25} and 1000000 to get 160000.
160000x^{2}+147670.9425=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 160000\times 147670.9425}}{2\times 160000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 160000 for a, 0 for b, and 147670.9425 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 160000\times 147670.9425}}{2\times 160000}
Square 0.
x=\frac{0±\sqrt{-640000\times 147670.9425}}{2\times 160000}
Multiply -4 times 160000.
x=\frac{0±\sqrt{-94509403200}}{2\times 160000}
Multiply -640000 times 147670.9425.
x=\frac{0±28920\sqrt{113}i}{2\times 160000}
Take the square root of -94509403200.
x=\frac{0±28920\sqrt{113}i}{320000}
Multiply 2 times 160000.
x=\frac{723\sqrt{113}i}{8000}
Now solve the equation x=\frac{0±28920\sqrt{113}i}{320000} when ± is plus.
x=-\frac{723\sqrt{113}i}{8000}
Now solve the equation x=\frac{0±28920\sqrt{113}i}{320000} when ± is minus.
x=\frac{723\sqrt{113}i}{8000} x=-\frac{723\sqrt{113}i}{8000}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}