Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\times 22600\times 3.615^{2}+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Add 14000 and 8600 to get 22600.
11300\times 3.615^{2}+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Multiply \frac{1}{2} and 22600 to get 11300.
11300\times 13.068225+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Calculate 3.615 to the power of 2 and get 13.068225.
147670.9425+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Multiply 11300 and 13.068225 to get 147670.9425.
147670.9425+\frac{4}{25}\times 10^{6}x^{2}=0
Multiply \frac{1}{2} and 0.32 to get \frac{4}{25}.
147670.9425+\frac{4}{25}\times 1000000x^{2}=0
Calculate 10 to the power of 6 and get 1000000.
147670.9425+160000x^{2}=0
Multiply \frac{4}{25} and 1000000 to get 160000.
160000x^{2}=-147670.9425
Subtract 147670.9425 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-147670.9425}{160000}
Divide both sides by 160000.
x^{2}=\frac{-1476709425}{1600000000}
Expand \frac{-147670.9425}{160000} by multiplying both numerator and the denominator by 10000.
x^{2}=-\frac{59068377}{64000000}
Reduce the fraction \frac{-1476709425}{1600000000} to lowest terms by extracting and canceling out 25.
x=\frac{723\sqrt{113}i}{8000} x=-\frac{723\sqrt{113}i}{8000}
The equation is now solved.
\frac{1}{2}\times 22600\times 3.615^{2}+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Add 14000 and 8600 to get 22600.
11300\times 3.615^{2}+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Multiply \frac{1}{2} and 22600 to get 11300.
11300\times 13.068225+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Calculate 3.615 to the power of 2 and get 13.068225.
147670.9425+\frac{1}{2}\times 0.32\times 10^{6}x^{2}=0
Multiply 11300 and 13.068225 to get 147670.9425.
147670.9425+\frac{4}{25}\times 10^{6}x^{2}=0
Multiply \frac{1}{2} and 0.32 to get \frac{4}{25}.
147670.9425+\frac{4}{25}\times 1000000x^{2}=0
Calculate 10 to the power of 6 and get 1000000.
147670.9425+160000x^{2}=0
Multiply \frac{4}{25} and 1000000 to get 160000.
160000x^{2}+147670.9425=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 160000\times 147670.9425}}{2\times 160000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 160000 for a, 0 for b, and 147670.9425 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 160000\times 147670.9425}}{2\times 160000}
Square 0.
x=\frac{0±\sqrt{-640000\times 147670.9425}}{2\times 160000}
Multiply -4 times 160000.
x=\frac{0±\sqrt{-94509403200}}{2\times 160000}
Multiply -640000 times 147670.9425.
x=\frac{0±28920\sqrt{113}i}{2\times 160000}
Take the square root of -94509403200.
x=\frac{0±28920\sqrt{113}i}{320000}
Multiply 2 times 160000.
x=\frac{723\sqrt{113}i}{8000}
Now solve the equation x=\frac{0±28920\sqrt{113}i}{320000} when ± is plus.
x=-\frac{723\sqrt{113}i}{8000}
Now solve the equation x=\frac{0±28920\sqrt{113}i}{320000} when ± is minus.
x=\frac{723\sqrt{113}i}{8000} x=-\frac{723\sqrt{113}i}{8000}
The equation is now solved.