Skip to main content
Solve for v_0 (complex solution)
Tick mark Image
Solve for v_0
Tick mark Image
Solve for t (complex solution)
Tick mark Image
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-v_{0}t-x_{0}=-\frac{1}{2}\alpha t^{2}
Subtract \frac{1}{2}\alpha t^{2} from both sides. Anything subtracted from zero gives its negation.
-v_{0}t=-\frac{1}{2}\alpha t^{2}+x_{0}
Add x_{0} to both sides.
\left(-t\right)v_{0}=-\frac{\alpha t^{2}}{2}+x_{0}
The equation is in standard form.
\frac{\left(-t\right)v_{0}}{-t}=\frac{-\frac{\alpha t^{2}}{2}+x_{0}}{-t}
Divide both sides by -t.
v_{0}=\frac{-\frac{\alpha t^{2}}{2}+x_{0}}{-t}
Dividing by -t undoes the multiplication by -t.
v_{0}=\frac{t\alpha }{2}-\frac{x_{0}}{t}
Divide x_{0}-\frac{\alpha t^{2}}{2} by -t.
-v_{0}t-x_{0}=-\frac{1}{2}\alpha t^{2}
Subtract \frac{1}{2}\alpha t^{2} from both sides. Anything subtracted from zero gives its negation.
-v_{0}t=-\frac{1}{2}\alpha t^{2}+x_{0}
Add x_{0} to both sides.
\left(-t\right)v_{0}=-\frac{\alpha t^{2}}{2}+x_{0}
The equation is in standard form.
\frac{\left(-t\right)v_{0}}{-t}=\frac{-\frac{\alpha t^{2}}{2}+x_{0}}{-t}
Divide both sides by -t.
v_{0}=\frac{-\frac{\alpha t^{2}}{2}+x_{0}}{-t}
Dividing by -t undoes the multiplication by -t.
v_{0}=\frac{t\alpha }{2}-\frac{x_{0}}{t}
Divide x_{0}-\frac{\alpha t^{2}}{2} by -t.