Solve for v_0 (complex solution)
\left\{\begin{matrix}v_{0}=\frac{t\alpha }{2}-\frac{x_{0}}{t}\text{, }&t\neq 0\\v_{0}\in \mathrm{C}\text{, }&x_{0}=0\text{ and }t=0\end{matrix}\right.
Solve for v_0
\left\{\begin{matrix}v_{0}=\frac{t\alpha }{2}-\frac{x_{0}}{t}\text{, }&t\neq 0\\v_{0}\in \mathrm{R}\text{, }&x_{0}=0\text{ and }t=0\end{matrix}\right.
Solve for t (complex solution)
\left\{\begin{matrix}t=\frac{\sqrt{2x_{0}\alpha +v_{0}^{2}}+v_{0}}{\alpha }\text{; }t=\frac{-\sqrt{2x_{0}\alpha +v_{0}^{2}}+v_{0}}{\alpha }\text{, }&\alpha \neq 0\\t=-\frac{x_{0}}{v_{0}}\text{, }&\alpha =0\text{ and }v_{0}\neq 0\\t\in \mathrm{C}\text{, }&\alpha =0\text{ and }v_{0}=0\text{ and }x_{0}=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=\frac{\sqrt{2x_{0}\alpha +v_{0}^{2}}+v_{0}}{\alpha }\text{; }t=\frac{-\sqrt{2x_{0}\alpha +v_{0}^{2}}+v_{0}}{\alpha }\text{, }&\left(v_{0}\neq 0\text{ and }\alpha =-\frac{v_{0}^{2}}{2x_{0}}\text{ and }x_{0}\neq 0\right)\text{ or }\left(\alpha \neq 0\text{ and }\alpha \geq -\frac{v_{0}^{2}}{2x_{0}}\text{ and }x_{0}\geq 0\right)\text{ or }\left(x_{0}=0\text{ and }\alpha \neq 0\right)\text{ or }\left(\alpha \neq 0\text{ and }x_{0}\leq 0\text{ and }\alpha \leq -\frac{v_{0}^{2}}{2x_{0}}\right)\\t=-\frac{x_{0}}{v_{0}}\text{, }&\alpha =0\text{ and }v_{0}\neq 0\\t\in \mathrm{R}\text{, }&\alpha =0\text{ and }v_{0}=0\text{ and }x_{0}=0\end{matrix}\right.
Share
Copied to clipboard
-v_{0}t-x_{0}=-\frac{1}{2}\alpha t^{2}
Subtract \frac{1}{2}\alpha t^{2} from both sides. Anything subtracted from zero gives its negation.
-v_{0}t=-\frac{1}{2}\alpha t^{2}+x_{0}
Add x_{0} to both sides.
\left(-t\right)v_{0}=-\frac{\alpha t^{2}}{2}+x_{0}
The equation is in standard form.
\frac{\left(-t\right)v_{0}}{-t}=\frac{-\frac{\alpha t^{2}}{2}+x_{0}}{-t}
Divide both sides by -t.
v_{0}=\frac{-\frac{\alpha t^{2}}{2}+x_{0}}{-t}
Dividing by -t undoes the multiplication by -t.
v_{0}=\frac{t\alpha }{2}-\frac{x_{0}}{t}
Divide x_{0}-\frac{\alpha t^{2}}{2} by -t.
-v_{0}t-x_{0}=-\frac{1}{2}\alpha t^{2}
Subtract \frac{1}{2}\alpha t^{2} from both sides. Anything subtracted from zero gives its negation.
-v_{0}t=-\frac{1}{2}\alpha t^{2}+x_{0}
Add x_{0} to both sides.
\left(-t\right)v_{0}=-\frac{\alpha t^{2}}{2}+x_{0}
The equation is in standard form.
\frac{\left(-t\right)v_{0}}{-t}=\frac{-\frac{\alpha t^{2}}{2}+x_{0}}{-t}
Divide both sides by -t.
v_{0}=\frac{-\frac{\alpha t^{2}}{2}+x_{0}}{-t}
Dividing by -t undoes the multiplication by -t.
v_{0}=\frac{t\alpha }{2}-\frac{x_{0}}{t}
Divide x_{0}-\frac{\alpha t^{2}}{2} by -t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}