Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\left(\frac{1}{3}\left(\frac{1}{4}x+\frac{1}{4}\left(-2\right)-3\right)-2\right)-1=x
Use the distributive property to multiply \frac{1}{4} by x-2.
\frac{1}{2}\left(\frac{1}{3}\left(\frac{1}{4}x+\frac{-2}{4}-3\right)-2\right)-1=x
Multiply \frac{1}{4} and -2 to get \frac{-2}{4}.
\frac{1}{2}\left(\frac{1}{3}\left(\frac{1}{4}x-\frac{1}{2}-3\right)-2\right)-1=x
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}\left(\frac{1}{3}\left(\frac{1}{4}x-\frac{1}{2}-\frac{6}{2}\right)-2\right)-1=x
Convert 3 to fraction \frac{6}{2}.
\frac{1}{2}\left(\frac{1}{3}\left(\frac{1}{4}x+\frac{-1-6}{2}\right)-2\right)-1=x
Since -\frac{1}{2} and \frac{6}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\left(\frac{1}{3}\left(\frac{1}{4}x-\frac{7}{2}\right)-2\right)-1=x
Subtract 6 from -1 to get -7.
\frac{1}{2}\left(\frac{1}{3}\times \frac{1}{4}x+\frac{1}{3}\left(-\frac{7}{2}\right)-2\right)-1=x
Use the distributive property to multiply \frac{1}{3} by \frac{1}{4}x-\frac{7}{2}.
\frac{1}{2}\left(\frac{1\times 1}{3\times 4}x+\frac{1}{3}\left(-\frac{7}{2}\right)-2\right)-1=x
Multiply \frac{1}{3} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}\left(\frac{1}{12}x+\frac{1}{3}\left(-\frac{7}{2}\right)-2\right)-1=x
Do the multiplications in the fraction \frac{1\times 1}{3\times 4}.
\frac{1}{2}\left(\frac{1}{12}x+\frac{1\left(-7\right)}{3\times 2}-2\right)-1=x
Multiply \frac{1}{3} times -\frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}\left(\frac{1}{12}x+\frac{-7}{6}-2\right)-1=x
Do the multiplications in the fraction \frac{1\left(-7\right)}{3\times 2}.
\frac{1}{2}\left(\frac{1}{12}x-\frac{7}{6}-2\right)-1=x
Fraction \frac{-7}{6} can be rewritten as -\frac{7}{6} by extracting the negative sign.
\frac{1}{2}\left(\frac{1}{12}x-\frac{7}{6}-\frac{12}{6}\right)-1=x
Convert 2 to fraction \frac{12}{6}.
\frac{1}{2}\left(\frac{1}{12}x+\frac{-7-12}{6}\right)-1=x
Since -\frac{7}{6} and \frac{12}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\left(\frac{1}{12}x-\frac{19}{6}\right)-1=x
Subtract 12 from -7 to get -19.
\frac{1}{2}\times \frac{1}{12}x+\frac{1}{2}\left(-\frac{19}{6}\right)-1=x
Use the distributive property to multiply \frac{1}{2} by \frac{1}{12}x-\frac{19}{6}.
\frac{1\times 1}{2\times 12}x+\frac{1}{2}\left(-\frac{19}{6}\right)-1=x
Multiply \frac{1}{2} times \frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{24}x+\frac{1}{2}\left(-\frac{19}{6}\right)-1=x
Do the multiplications in the fraction \frac{1\times 1}{2\times 12}.
\frac{1}{24}x+\frac{1\left(-19\right)}{2\times 6}-1=x
Multiply \frac{1}{2} times -\frac{19}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{24}x+\frac{-19}{12}-1=x
Do the multiplications in the fraction \frac{1\left(-19\right)}{2\times 6}.
\frac{1}{24}x-\frac{19}{12}-1=x
Fraction \frac{-19}{12} can be rewritten as -\frac{19}{12} by extracting the negative sign.
\frac{1}{24}x-\frac{19}{12}-\frac{12}{12}=x
Convert 1 to fraction \frac{12}{12}.
\frac{1}{24}x+\frac{-19-12}{12}=x
Since -\frac{19}{12} and \frac{12}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{24}x-\frac{31}{12}=x
Subtract 12 from -19 to get -31.
\frac{1}{24}x-\frac{31}{12}-x=0
Subtract x from both sides.
-\frac{23}{24}x-\frac{31}{12}=0
Combine \frac{1}{24}x and -x to get -\frac{23}{24}x.
-\frac{23}{24}x=\frac{31}{12}
Add \frac{31}{12} to both sides. Anything plus zero gives itself.
x=\frac{31}{12}\left(-\frac{24}{23}\right)
Multiply both sides by -\frac{24}{23}, the reciprocal of -\frac{23}{24}.
x=\frac{31\left(-24\right)}{12\times 23}
Multiply \frac{31}{12} times -\frac{24}{23} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-744}{276}
Do the multiplications in the fraction \frac{31\left(-24\right)}{12\times 23}.
x=-\frac{62}{23}
Reduce the fraction \frac{-744}{276} to lowest terms by extracting and canceling out 12.