Solve for x
x=58
Graph
Share
Copied to clipboard
\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}x-3\right)-3\right)-3=1\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}x-3\right)-3\right)-3=2
Multiply 1 and 2 to get 2.
\frac{1}{2}\left(\frac{1}{2}\times \frac{1}{2}x+\frac{1}{2}\left(-3\right)-3\right)-3=2
Use the distributive property to multiply \frac{1}{2} by \frac{1}{2}x-3.
\frac{1}{2}\left(\frac{1\times 1}{2\times 2}x+\frac{1}{2}\left(-3\right)-3\right)-3=2
Multiply \frac{1}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}\left(\frac{1}{4}x+\frac{1}{2}\left(-3\right)-3\right)-3=2
Do the multiplications in the fraction \frac{1\times 1}{2\times 2}.
\frac{1}{2}\left(\frac{1}{4}x+\frac{-3}{2}-3\right)-3=2
Multiply \frac{1}{2} and -3 to get \frac{-3}{2}.
\frac{1}{2}\left(\frac{1}{4}x-\frac{3}{2}-3\right)-3=2
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{1}{2}\left(\frac{1}{4}x-\frac{3}{2}-\frac{6}{2}\right)-3=2
Convert 3 to fraction \frac{6}{2}.
\frac{1}{2}\left(\frac{1}{4}x+\frac{-3-6}{2}\right)-3=2
Since -\frac{3}{2} and \frac{6}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\left(\frac{1}{4}x-\frac{9}{2}\right)-3=2
Subtract 6 from -3 to get -9.
\frac{1}{2}\times \frac{1}{4}x+\frac{1}{2}\left(-\frac{9}{2}\right)-3=2
Use the distributive property to multiply \frac{1}{2} by \frac{1}{4}x-\frac{9}{2}.
\frac{1\times 1}{2\times 4}x+\frac{1}{2}\left(-\frac{9}{2}\right)-3=2
Multiply \frac{1}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{8}x+\frac{1}{2}\left(-\frac{9}{2}\right)-3=2
Do the multiplications in the fraction \frac{1\times 1}{2\times 4}.
\frac{1}{8}x+\frac{1\left(-9\right)}{2\times 2}-3=2
Multiply \frac{1}{2} times -\frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{8}x+\frac{-9}{4}-3=2
Do the multiplications in the fraction \frac{1\left(-9\right)}{2\times 2}.
\frac{1}{8}x-\frac{9}{4}-3=2
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
\frac{1}{8}x-\frac{9}{4}-\frac{12}{4}=2
Convert 3 to fraction \frac{12}{4}.
\frac{1}{8}x+\frac{-9-12}{4}=2
Since -\frac{9}{4} and \frac{12}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{8}x-\frac{21}{4}=2
Subtract 12 from -9 to get -21.
\frac{1}{8}x=2+\frac{21}{4}
Add \frac{21}{4} to both sides.
\frac{1}{8}x=\frac{8}{4}+\frac{21}{4}
Convert 2 to fraction \frac{8}{4}.
\frac{1}{8}x=\frac{8+21}{4}
Since \frac{8}{4} and \frac{21}{4} have the same denominator, add them by adding their numerators.
\frac{1}{8}x=\frac{29}{4}
Add 8 and 21 to get 29.
x=\frac{29}{4}\times 8
Multiply both sides by 8, the reciprocal of \frac{1}{8}.
x=\frac{29\times 8}{4}
Express \frac{29}{4}\times 8 as a single fraction.
x=\frac{232}{4}
Multiply 29 and 8 to get 232.
x=58
Divide 232 by 4 to get 58.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}