Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\left(2x+14\right)\left(x-0\times 5\right)=405
Combine x and x to get 2x.
\frac{1}{2}\left(2x+14\right)\left(x-0\right)=405
Multiply 0 and 5 to get 0.
\left(x+7\right)\left(x-0\right)=405
Use the distributive property to multiply \frac{1}{2} by 2x+14.
x\left(x-0\right)+7\left(x-0\right)=405
Use the distributive property to multiply x+7 by x-0.
x\left(x-0\right)+7\left(x-0\right)-405=0
Subtract 405 from both sides.
xx+7x-405=0
Reorder the terms.
x^{2}+7x-405=0
Multiply x and x to get x^{2}.
x=\frac{-7±\sqrt{7^{2}-4\left(-405\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 7 for b, and -405 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-405\right)}}{2}
Square 7.
x=\frac{-7±\sqrt{49+1620}}{2}
Multiply -4 times -405.
x=\frac{-7±\sqrt{1669}}{2}
Add 49 to 1620.
x=\frac{\sqrt{1669}-7}{2}
Now solve the equation x=\frac{-7±\sqrt{1669}}{2} when ± is plus. Add -7 to \sqrt{1669}.
x=\frac{-\sqrt{1669}-7}{2}
Now solve the equation x=\frac{-7±\sqrt{1669}}{2} when ± is minus. Subtract \sqrt{1669} from -7.
x=\frac{\sqrt{1669}-7}{2} x=\frac{-\sqrt{1669}-7}{2}
The equation is now solved.
\frac{1}{2}\left(2x+14\right)\left(x-0\times 5\right)=405
Combine x and x to get 2x.
\frac{1}{2}\left(2x+14\right)\left(x-0\right)=405
Multiply 0 and 5 to get 0.
\left(x+7\right)\left(x-0\right)=405
Use the distributive property to multiply \frac{1}{2} by 2x+14.
x\left(x-0\right)+7\left(x-0\right)=405
Use the distributive property to multiply x+7 by x-0.
xx+7x=405
Reorder the terms.
x^{2}+7x=405
Multiply x and x to get x^{2}.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=405+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=405+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{1669}{4}
Add 405 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{1669}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{1669}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{\sqrt{1669}}{2} x+\frac{7}{2}=-\frac{\sqrt{1669}}{2}
Simplify.
x=\frac{\sqrt{1669}-7}{2} x=\frac{-\sqrt{1669}-7}{2}
Subtract \frac{7}{2} from both sides of the equation.