Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}\left(14x-\frac{2}{3}\times 9x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Use the distributive property to multiply -\frac{2}{3} by 9x-21y.
\frac{1}{2}\left(14x+\frac{-2\times 9}{3}x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Express -\frac{2}{3}\times 9 as a single fraction.
\frac{1}{2}\left(14x+\frac{-18}{3}x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Multiply -2 and 9 to get -18.
\frac{1}{2}\left(14x-6x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Divide -18 by 3 to get -6.
\frac{1}{2}\left(14x-6x+\frac{-2\left(-21\right)}{3}y-2\left(x+y\right)\right)
Express -\frac{2}{3}\left(-21\right) as a single fraction.
\frac{1}{2}\left(14x-6x+\frac{42}{3}y-2\left(x+y\right)\right)
Multiply -2 and -21 to get 42.
\frac{1}{2}\left(14x-6x+14y-2\left(x+y\right)\right)
Divide 42 by 3 to get 14.
\frac{1}{2}\left(8x+14y-2\left(x+y\right)\right)
Combine 14x and -6x to get 8x.
\frac{1}{2}\left(8x+14y-2x-2y\right)
Use the distributive property to multiply -2 by x+y.
\frac{1}{2}\left(6x+14y-2y\right)
Combine 8x and -2x to get 6x.
\frac{1}{2}\left(6x+12y\right)
Combine 14y and -2y to get 12y.
\frac{1}{2}\times 6x+\frac{1}{2}\times 12y
Use the distributive property to multiply \frac{1}{2} by 6x+12y.
\frac{6}{2}x+\frac{1}{2}\times 12y
Multiply \frac{1}{2} and 6 to get \frac{6}{2}.
3x+\frac{1}{2}\times 12y
Divide 6 by 2 to get 3.
3x+\frac{12}{2}y
Multiply \frac{1}{2} and 12 to get \frac{12}{2}.
3x+6y
Divide 12 by 2 to get 6.
\frac{1}{2}\left(14x-\frac{2}{3}\times 9x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Use the distributive property to multiply -\frac{2}{3} by 9x-21y.
\frac{1}{2}\left(14x+\frac{-2\times 9}{3}x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Express -\frac{2}{3}\times 9 as a single fraction.
\frac{1}{2}\left(14x+\frac{-18}{3}x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Multiply -2 and 9 to get -18.
\frac{1}{2}\left(14x-6x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Divide -18 by 3 to get -6.
\frac{1}{2}\left(14x-6x+\frac{-2\left(-21\right)}{3}y-2\left(x+y\right)\right)
Express -\frac{2}{3}\left(-21\right) as a single fraction.
\frac{1}{2}\left(14x-6x+\frac{42}{3}y-2\left(x+y\right)\right)
Multiply -2 and -21 to get 42.
\frac{1}{2}\left(14x-6x+14y-2\left(x+y\right)\right)
Divide 42 by 3 to get 14.
\frac{1}{2}\left(8x+14y-2\left(x+y\right)\right)
Combine 14x and -6x to get 8x.
\frac{1}{2}\left(8x+14y-2x-2y\right)
Use the distributive property to multiply -2 by x+y.
\frac{1}{2}\left(6x+14y-2y\right)
Combine 8x and -2x to get 6x.
\frac{1}{2}\left(6x+12y\right)
Combine 14y and -2y to get 12y.
\frac{1}{2}\times 6x+\frac{1}{2}\times 12y
Use the distributive property to multiply \frac{1}{2} by 6x+12y.
\frac{6}{2}x+\frac{1}{2}\times 12y
Multiply \frac{1}{2} and 6 to get \frac{6}{2}.
3x+\frac{1}{2}\times 12y
Divide 6 by 2 to get 3.
3x+\frac{12}{2}y
Multiply \frac{1}{2} and 12 to get \frac{12}{2}.
3x+6y
Divide 12 by 2 to get 6.