Evaluate
3\left(x+2y\right)
Expand
3x+6y
Share
Copied to clipboard
\frac{1}{2}\left(14x-\frac{2}{3}\times 9x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Use the distributive property to multiply -\frac{2}{3} by 9x-21y.
\frac{1}{2}\left(14x+\frac{-2\times 9}{3}x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Express -\frac{2}{3}\times 9 as a single fraction.
\frac{1}{2}\left(14x+\frac{-18}{3}x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Multiply -2 and 9 to get -18.
\frac{1}{2}\left(14x-6x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Divide -18 by 3 to get -6.
\frac{1}{2}\left(14x-6x+\frac{-2\left(-21\right)}{3}y-2\left(x+y\right)\right)
Express -\frac{2}{3}\left(-21\right) as a single fraction.
\frac{1}{2}\left(14x-6x+\frac{42}{3}y-2\left(x+y\right)\right)
Multiply -2 and -21 to get 42.
\frac{1}{2}\left(14x-6x+14y-2\left(x+y\right)\right)
Divide 42 by 3 to get 14.
\frac{1}{2}\left(8x+14y-2\left(x+y\right)\right)
Combine 14x and -6x to get 8x.
\frac{1}{2}\left(8x+14y-2x-2y\right)
Use the distributive property to multiply -2 by x+y.
\frac{1}{2}\left(6x+14y-2y\right)
Combine 8x and -2x to get 6x.
\frac{1}{2}\left(6x+12y\right)
Combine 14y and -2y to get 12y.
\frac{1}{2}\times 6x+\frac{1}{2}\times 12y
Use the distributive property to multiply \frac{1}{2} by 6x+12y.
\frac{6}{2}x+\frac{1}{2}\times 12y
Multiply \frac{1}{2} and 6 to get \frac{6}{2}.
3x+\frac{1}{2}\times 12y
Divide 6 by 2 to get 3.
3x+\frac{12}{2}y
Multiply \frac{1}{2} and 12 to get \frac{12}{2}.
3x+6y
Divide 12 by 2 to get 6.
\frac{1}{2}\left(14x-\frac{2}{3}\times 9x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Use the distributive property to multiply -\frac{2}{3} by 9x-21y.
\frac{1}{2}\left(14x+\frac{-2\times 9}{3}x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Express -\frac{2}{3}\times 9 as a single fraction.
\frac{1}{2}\left(14x+\frac{-18}{3}x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Multiply -2 and 9 to get -18.
\frac{1}{2}\left(14x-6x-\frac{2}{3}\left(-21\right)y-2\left(x+y\right)\right)
Divide -18 by 3 to get -6.
\frac{1}{2}\left(14x-6x+\frac{-2\left(-21\right)}{3}y-2\left(x+y\right)\right)
Express -\frac{2}{3}\left(-21\right) as a single fraction.
\frac{1}{2}\left(14x-6x+\frac{42}{3}y-2\left(x+y\right)\right)
Multiply -2 and -21 to get 42.
\frac{1}{2}\left(14x-6x+14y-2\left(x+y\right)\right)
Divide 42 by 3 to get 14.
\frac{1}{2}\left(8x+14y-2\left(x+y\right)\right)
Combine 14x and -6x to get 8x.
\frac{1}{2}\left(8x+14y-2x-2y\right)
Use the distributive property to multiply -2 by x+y.
\frac{1}{2}\left(6x+14y-2y\right)
Combine 8x and -2x to get 6x.
\frac{1}{2}\left(6x+12y\right)
Combine 14y and -2y to get 12y.
\frac{1}{2}\times 6x+\frac{1}{2}\times 12y
Use the distributive property to multiply \frac{1}{2} by 6x+12y.
\frac{6}{2}x+\frac{1}{2}\times 12y
Multiply \frac{1}{2} and 6 to get \frac{6}{2}.
3x+\frac{1}{2}\times 12y
Divide 6 by 2 to get 3.
3x+\frac{12}{2}y
Multiply \frac{1}{2} and 12 to get \frac{12}{2}.
3x+6y
Divide 12 by 2 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}