Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\left(x^{2}+2x+1+3^{2}\right)=\left(x+1\right)x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\frac{1}{2}\left(x^{2}+2x+1+9\right)=\left(x+1\right)x
Calculate 3 to the power of 2 and get 9.
\frac{1}{2}\left(x^{2}+2x+10\right)=\left(x+1\right)x
Add 1 and 9 to get 10.
\frac{1}{2}x^{2}+x+5=\left(x+1\right)x
Use the distributive property to multiply \frac{1}{2} by x^{2}+2x+10.
\frac{1}{2}x^{2}+x+5=x^{2}+x
Use the distributive property to multiply x+1 by x.
\frac{1}{2}x^{2}+x+5-x^{2}=x
Subtract x^{2} from both sides.
-\frac{1}{2}x^{2}+x+5=x
Combine \frac{1}{2}x^{2} and -x^{2} to get -\frac{1}{2}x^{2}.
-\frac{1}{2}x^{2}+x+5-x=0
Subtract x from both sides.
-\frac{1}{2}x^{2}+5=0
Combine x and -x to get 0.
-\frac{1}{2}x^{2}=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-5\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
x^{2}=10
Multiply -5 and -2 to get 10.
x=\sqrt{10} x=-\sqrt{10}
Take the square root of both sides of the equation.
\frac{1}{2}\left(x^{2}+2x+1+3^{2}\right)=\left(x+1\right)x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\frac{1}{2}\left(x^{2}+2x+1+9\right)=\left(x+1\right)x
Calculate 3 to the power of 2 and get 9.
\frac{1}{2}\left(x^{2}+2x+10\right)=\left(x+1\right)x
Add 1 and 9 to get 10.
\frac{1}{2}x^{2}+x+5=\left(x+1\right)x
Use the distributive property to multiply \frac{1}{2} by x^{2}+2x+10.
\frac{1}{2}x^{2}+x+5=x^{2}+x
Use the distributive property to multiply x+1 by x.
\frac{1}{2}x^{2}+x+5-x^{2}=x
Subtract x^{2} from both sides.
-\frac{1}{2}x^{2}+x+5=x
Combine \frac{1}{2}x^{2} and -x^{2} to get -\frac{1}{2}x^{2}.
-\frac{1}{2}x^{2}+x+5-x=0
Subtract x from both sides.
-\frac{1}{2}x^{2}+5=0
Combine x and -x to get 0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{2}\right)\times 5}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 0 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{1}{2}\right)\times 5}}{2\left(-\frac{1}{2}\right)}
Square 0.
x=\frac{0±\sqrt{2\times 5}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{0±\sqrt{10}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times 5.
x=\frac{0±\sqrt{10}}{-1}
Multiply 2 times -\frac{1}{2}.
x=-\sqrt{10}
Now solve the equation x=\frac{0±\sqrt{10}}{-1} when ± is plus.
x=\sqrt{10}
Now solve the equation x=\frac{0±\sqrt{10}}{-1} when ± is minus.
x=-\sqrt{10} x=\sqrt{10}
The equation is now solved.