Solve for x
x=\sqrt{10}\approx 3.16227766
x=-\sqrt{10}\approx -3.16227766
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 1 } { 2 } [ ( x + 1 ) ^ { 2 } + 3 ^ { 2 } ] = ( x + 1 ) x
Share
Copied to clipboard
\frac{1}{2}\left(x^{2}+2x+1+3^{2}\right)=\left(x+1\right)x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\frac{1}{2}\left(x^{2}+2x+1+9\right)=\left(x+1\right)x
Calculate 3 to the power of 2 and get 9.
\frac{1}{2}\left(x^{2}+2x+10\right)=\left(x+1\right)x
Add 1 and 9 to get 10.
\frac{1}{2}x^{2}+x+5=\left(x+1\right)x
Use the distributive property to multiply \frac{1}{2} by x^{2}+2x+10.
\frac{1}{2}x^{2}+x+5=x^{2}+x
Use the distributive property to multiply x+1 by x.
\frac{1}{2}x^{2}+x+5-x^{2}=x
Subtract x^{2} from both sides.
-\frac{1}{2}x^{2}+x+5=x
Combine \frac{1}{2}x^{2} and -x^{2} to get -\frac{1}{2}x^{2}.
-\frac{1}{2}x^{2}+x+5-x=0
Subtract x from both sides.
-\frac{1}{2}x^{2}+5=0
Combine x and -x to get 0.
-\frac{1}{2}x^{2}=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-5\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
x^{2}=10
Multiply -5 and -2 to get 10.
x=\sqrt{10} x=-\sqrt{10}
Take the square root of both sides of the equation.
\frac{1}{2}\left(x^{2}+2x+1+3^{2}\right)=\left(x+1\right)x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\frac{1}{2}\left(x^{2}+2x+1+9\right)=\left(x+1\right)x
Calculate 3 to the power of 2 and get 9.
\frac{1}{2}\left(x^{2}+2x+10\right)=\left(x+1\right)x
Add 1 and 9 to get 10.
\frac{1}{2}x^{2}+x+5=\left(x+1\right)x
Use the distributive property to multiply \frac{1}{2} by x^{2}+2x+10.
\frac{1}{2}x^{2}+x+5=x^{2}+x
Use the distributive property to multiply x+1 by x.
\frac{1}{2}x^{2}+x+5-x^{2}=x
Subtract x^{2} from both sides.
-\frac{1}{2}x^{2}+x+5=x
Combine \frac{1}{2}x^{2} and -x^{2} to get -\frac{1}{2}x^{2}.
-\frac{1}{2}x^{2}+x+5-x=0
Subtract x from both sides.
-\frac{1}{2}x^{2}+5=0
Combine x and -x to get 0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{2}\right)\times 5}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 0 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{1}{2}\right)\times 5}}{2\left(-\frac{1}{2}\right)}
Square 0.
x=\frac{0±\sqrt{2\times 5}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{0±\sqrt{10}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times 5.
x=\frac{0±\sqrt{10}}{-1}
Multiply 2 times -\frac{1}{2}.
x=-\sqrt{10}
Now solve the equation x=\frac{0±\sqrt{10}}{-1} when ± is plus.
x=\sqrt{10}
Now solve the equation x=\frac{0±\sqrt{10}}{-1} when ± is minus.
x=-\sqrt{10} x=\sqrt{10}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}