\frac { 1 } { 2 } = \frac { 3 } { 6 } \quad \text { d } \frac { 1 } { 4 }
Solve for d
d=4
Share
Copied to clipboard
\frac{1}{2}=\frac{1}{2}d\times \frac{1}{4}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{2}=\frac{1\times 1}{2\times 4}d
Multiply \frac{1}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}=\frac{1}{8}d
Do the multiplications in the fraction \frac{1\times 1}{2\times 4}.
\frac{1}{8}d=\frac{1}{2}
Swap sides so that all variable terms are on the left hand side.
d=\frac{1}{2}\times 8
Multiply both sides by 8, the reciprocal of \frac{1}{8}.
d=\frac{8}{2}
Multiply \frac{1}{2} and 8 to get \frac{8}{2}.
d=4
Divide 8 by 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}