Solve for P
P=\frac{3}{8}=0.375
Share
Copied to clipboard
\frac{1}{2}=\frac{1}{5}+\frac{4}{5}P
Combine P and -\frac{1}{5}P to get \frac{4}{5}P.
\frac{1}{5}+\frac{4}{5}P=\frac{1}{2}
Swap sides so that all variable terms are on the left hand side.
\frac{4}{5}P=\frac{1}{2}-\frac{1}{5}
Subtract \frac{1}{5} from both sides.
\frac{4}{5}P=\frac{5}{10}-\frac{2}{10}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{1}{5} to fractions with denominator 10.
\frac{4}{5}P=\frac{5-2}{10}
Since \frac{5}{10} and \frac{2}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{5}P=\frac{3}{10}
Subtract 2 from 5 to get 3.
P=\frac{3}{10}\times \frac{5}{4}
Multiply both sides by \frac{5}{4}, the reciprocal of \frac{4}{5}.
P=\frac{3\times 5}{10\times 4}
Multiply \frac{3}{10} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
P=\frac{15}{40}
Do the multiplications in the fraction \frac{3\times 5}{10\times 4}.
P=\frac{3}{8}
Reduce the fraction \frac{15}{40} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}