Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{2\left(\sqrt{5}-1\right)}
Divide \frac{1}{2} by \frac{\sqrt{5}-1}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{\sqrt{5}-1}{2}.
\frac{2}{2\sqrt{5}-2}
Use the distributive property to multiply 2 by \sqrt{5}-1.
\frac{2\left(2\sqrt{5}+2\right)}{\left(2\sqrt{5}-2\right)\left(2\sqrt{5}+2\right)}
Rationalize the denominator of \frac{2}{2\sqrt{5}-2} by multiplying numerator and denominator by 2\sqrt{5}+2.
\frac{2\left(2\sqrt{5}+2\right)}{\left(2\sqrt{5}\right)^{2}-2^{2}}
Consider \left(2\sqrt{5}-2\right)\left(2\sqrt{5}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(2\sqrt{5}+2\right)}{2^{2}\left(\sqrt{5}\right)^{2}-2^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{2\left(2\sqrt{5}+2\right)}{4\left(\sqrt{5}\right)^{2}-2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\left(2\sqrt{5}+2\right)}{4\times 5-2^{2}}
The square of \sqrt{5} is 5.
\frac{2\left(2\sqrt{5}+2\right)}{20-2^{2}}
Multiply 4 and 5 to get 20.
\frac{2\left(2\sqrt{5}+2\right)}{20-4}
Calculate 2 to the power of 2 and get 4.
\frac{2\left(2\sqrt{5}+2\right)}{16}
Subtract 4 from 20 to get 16.
\frac{1}{8}\left(2\sqrt{5}+2\right)
Divide 2\left(2\sqrt{5}+2\right) by 16 to get \frac{1}{8}\left(2\sqrt{5}+2\right).
\frac{1}{8}\times 2\sqrt{5}+\frac{1}{8}\times 2
Use the distributive property to multiply \frac{1}{8} by 2\sqrt{5}+2.
\frac{2}{8}\sqrt{5}+\frac{1}{8}\times 2
Multiply \frac{1}{8} and 2 to get \frac{2}{8}.
\frac{1}{4}\sqrt{5}+\frac{1}{8}\times 2
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{1}{4}\sqrt{5}+\frac{2}{8}
Multiply \frac{1}{8} and 2 to get \frac{2}{8}.
\frac{1}{4}\sqrt{5}+\frac{1}{4}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.