Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
\frac{1}{2}+\left(\frac{30+1}{6}-\frac{3\times 4+3}{4}+\frac{1}{2}\right)\times \frac{10}{23}
Multiply 5 and 6 to get 30.
\frac{1}{2}+\left(\frac{31}{6}-\frac{3\times 4+3}{4}+\frac{1}{2}\right)\times \frac{10}{23}
Add 30 and 1 to get 31.
\frac{1}{2}+\left(\frac{31}{6}-\frac{12+3}{4}+\frac{1}{2}\right)\times \frac{10}{23}
Multiply 3 and 4 to get 12.
\frac{1}{2}+\left(\frac{31}{6}-\frac{15}{4}+\frac{1}{2}\right)\times \frac{10}{23}
Add 12 and 3 to get 15.
\frac{1}{2}+\left(\frac{62}{12}-\frac{45}{12}+\frac{1}{2}\right)\times \frac{10}{23}
Least common multiple of 6 and 4 is 12. Convert \frac{31}{6} and \frac{15}{4} to fractions with denominator 12.
\frac{1}{2}+\left(\frac{62-45}{12}+\frac{1}{2}\right)\times \frac{10}{23}
Since \frac{62}{12} and \frac{45}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}+\left(\frac{17}{12}+\frac{1}{2}\right)\times \frac{10}{23}
Subtract 45 from 62 to get 17.
\frac{1}{2}+\left(\frac{17}{12}+\frac{6}{12}\right)\times \frac{10}{23}
Least common multiple of 12 and 2 is 12. Convert \frac{17}{12} and \frac{1}{2} to fractions with denominator 12.
\frac{1}{2}+\frac{17+6}{12}\times \frac{10}{23}
Since \frac{17}{12} and \frac{6}{12} have the same denominator, add them by adding their numerators.
\frac{1}{2}+\frac{23}{12}\times \frac{10}{23}
Add 17 and 6 to get 23.
\frac{1}{2}+\frac{23\times 10}{12\times 23}
Multiply \frac{23}{12} times \frac{10}{23} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}+\frac{10}{12}
Cancel out 23 in both numerator and denominator.
\frac{1}{2}+\frac{5}{6}
Reduce the fraction \frac{10}{12} to lowest terms by extracting and canceling out 2.
\frac{3}{6}+\frac{5}{6}
Least common multiple of 2 and 6 is 6. Convert \frac{1}{2} and \frac{5}{6} to fractions with denominator 6.
\frac{3+5}{6}
Since \frac{3}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{8}{6}
Add 3 and 5 to get 8.
\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}