Evaluate
\frac{11}{6}\approx 1.833333333
Factor
\frac{11}{2 \cdot 3} = 1\frac{5}{6} = 1.8333333333333333
Share
Copied to clipboard
\frac{1+1}{2}-\frac{1}{3}-\left(\frac{-1}{2}-\frac{1}{3}-\frac{1}{6}\right)-\left(\frac{1}{3}-\frac{1}{2}\right)
Since \frac{1}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{2}{2}-\frac{1}{3}-\left(\frac{-1}{2}-\frac{1}{3}-\frac{1}{6}\right)-\left(\frac{1}{3}-\frac{1}{2}\right)
Add 1 and 1 to get 2.
1-\frac{1}{3}-\left(\frac{-1}{2}-\frac{1}{3}-\frac{1}{6}\right)-\left(\frac{1}{3}-\frac{1}{2}\right)
Divide 2 by 2 to get 1.
\frac{3}{3}-\frac{1}{3}-\left(\frac{-1}{2}-\frac{1}{3}-\frac{1}{6}\right)-\left(\frac{1}{3}-\frac{1}{2}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{3-1}{3}-\left(\frac{-1}{2}-\frac{1}{3}-\frac{1}{6}\right)-\left(\frac{1}{3}-\frac{1}{2}\right)
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}-\left(\frac{-1}{2}-\frac{1}{3}-\frac{1}{6}\right)-\left(\frac{1}{3}-\frac{1}{2}\right)
Subtract 1 from 3 to get 2.
\frac{2}{3}-\left(-\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)-\left(\frac{1}{3}-\frac{1}{2}\right)
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{2}{3}-\left(-\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)-\left(\frac{1}{3}-\frac{1}{2}\right)
Least common multiple of 2 and 3 is 6. Convert -\frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{2}{3}-\left(\frac{-3-2}{6}-\frac{1}{6}\right)-\left(\frac{1}{3}-\frac{1}{2}\right)
Since -\frac{3}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}-\left(-\frac{5}{6}-\frac{1}{6}\right)-\left(\frac{1}{3}-\frac{1}{2}\right)
Subtract 2 from -3 to get -5.
\frac{2}{3}-\frac{-5-1}{6}-\left(\frac{1}{3}-\frac{1}{2}\right)
Since -\frac{5}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}-\frac{-6}{6}-\left(\frac{1}{3}-\frac{1}{2}\right)
Subtract 1 from -5 to get -6.
\frac{2}{3}-\left(-1\right)-\left(\frac{1}{3}-\frac{1}{2}\right)
Divide -6 by 6 to get -1.
\frac{2}{3}+1-\left(\frac{1}{3}-\frac{1}{2}\right)
The opposite of -1 is 1.
\frac{2}{3}+\frac{3}{3}-\left(\frac{1}{3}-\frac{1}{2}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{2+3}{3}-\left(\frac{1}{3}-\frac{1}{2}\right)
Since \frac{2}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{5}{3}-\left(\frac{1}{3}-\frac{1}{2}\right)
Add 2 and 3 to get 5.
\frac{5}{3}-\left(\frac{2}{6}-\frac{3}{6}\right)
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{5}{3}-\frac{2-3}{6}
Since \frac{2}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{3}-\left(-\frac{1}{6}\right)
Subtract 3 from 2 to get -1.
\frac{5}{3}+\frac{1}{6}
The opposite of -\frac{1}{6} is \frac{1}{6}.
\frac{10}{6}+\frac{1}{6}
Least common multiple of 3 and 6 is 6. Convert \frac{5}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{10+1}{6}
Since \frac{10}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{11}{6}
Add 10 and 1 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}