Evaluate
\frac{3203}{1428}\approx 2.242997199
Factor
\frac{3203}{2 ^ {2} \cdot 3 \cdot 7 \cdot 17} = 2\frac{347}{1428} = 2.242997198879552
Share
Copied to clipboard
\frac{7}{14}+\frac{8}{14}+\frac{7}{12}+\frac{10}{17}
Least common multiple of 2 and 7 is 14. Convert \frac{1}{2} and \frac{4}{7} to fractions with denominator 14.
\frac{7+8}{14}+\frac{7}{12}+\frac{10}{17}
Since \frac{7}{14} and \frac{8}{14} have the same denominator, add them by adding their numerators.
\frac{15}{14}+\frac{7}{12}+\frac{10}{17}
Add 7 and 8 to get 15.
\frac{90}{84}+\frac{49}{84}+\frac{10}{17}
Least common multiple of 14 and 12 is 84. Convert \frac{15}{14} and \frac{7}{12} to fractions with denominator 84.
\frac{90+49}{84}+\frac{10}{17}
Since \frac{90}{84} and \frac{49}{84} have the same denominator, add them by adding their numerators.
\frac{139}{84}+\frac{10}{17}
Add 90 and 49 to get 139.
\frac{2363}{1428}+\frac{840}{1428}
Least common multiple of 84 and 17 is 1428. Convert \frac{139}{84} and \frac{10}{17} to fractions with denominator 1428.
\frac{2363+840}{1428}
Since \frac{2363}{1428} and \frac{840}{1428} have the same denominator, add them by adding their numerators.
\frac{3203}{1428}
Add 2363 and 840 to get 3203.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}