Solve for x
x=\frac{\sqrt{2}}{3}\approx 0.471404521
x=-\frac{\sqrt{2}}{3}\approx -0.471404521
Graph
Share
Copied to clipboard
2x^{2}\times \frac{1}{2}+2\times 3=28x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x^{2}, the least common multiple of 2,x^{2}.
x^{2}+2\times 3=28x^{2}
Multiply 2 and \frac{1}{2} to get 1.
x^{2}+6=28x^{2}
Multiply 2 and 3 to get 6.
x^{2}+6-28x^{2}=0
Subtract 28x^{2} from both sides.
-27x^{2}+6=0
Combine x^{2} and -28x^{2} to get -27x^{2}.
-27x^{2}=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-6}{-27}
Divide both sides by -27.
x^{2}=\frac{2}{9}
Reduce the fraction \frac{-6}{-27} to lowest terms by extracting and canceling out -3.
x=\frac{\sqrt{2}}{3} x=-\frac{\sqrt{2}}{3}
Take the square root of both sides of the equation.
2x^{2}\times \frac{1}{2}+2\times 3=28x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x^{2}, the least common multiple of 2,x^{2}.
x^{2}+2\times 3=28x^{2}
Multiply 2 and \frac{1}{2} to get 1.
x^{2}+6=28x^{2}
Multiply 2 and 3 to get 6.
x^{2}+6-28x^{2}=0
Subtract 28x^{2} from both sides.
-27x^{2}+6=0
Combine x^{2} and -28x^{2} to get -27x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-27\right)\times 6}}{2\left(-27\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -27 for a, 0 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-27\right)\times 6}}{2\left(-27\right)}
Square 0.
x=\frac{0±\sqrt{108\times 6}}{2\left(-27\right)}
Multiply -4 times -27.
x=\frac{0±\sqrt{648}}{2\left(-27\right)}
Multiply 108 times 6.
x=\frac{0±18\sqrt{2}}{2\left(-27\right)}
Take the square root of 648.
x=\frac{0±18\sqrt{2}}{-54}
Multiply 2 times -27.
x=-\frac{\sqrt{2}}{3}
Now solve the equation x=\frac{0±18\sqrt{2}}{-54} when ± is plus.
x=\frac{\sqrt{2}}{3}
Now solve the equation x=\frac{0±18\sqrt{2}}{-54} when ± is minus.
x=-\frac{\sqrt{2}}{3} x=\frac{\sqrt{2}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}