Evaluate
\frac{143}{140}\approx 1.021428571
Factor
\frac{11 \cdot 13}{2 ^ {2} \cdot 5 \cdot 7} = 1\frac{3}{140} = 1.0214285714285714
Share
Copied to clipboard
\frac{1}{2}+\frac{3}{5}\times \frac{9}{7}-\frac{1}{4}
Divide \frac{3}{5} by \frac{7}{9} by multiplying \frac{3}{5} by the reciprocal of \frac{7}{9}.
\frac{1}{2}+\frac{3\times 9}{5\times 7}-\frac{1}{4}
Multiply \frac{3}{5} times \frac{9}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}+\frac{27}{35}-\frac{1}{4}
Do the multiplications in the fraction \frac{3\times 9}{5\times 7}.
\frac{35}{70}+\frac{54}{70}-\frac{1}{4}
Least common multiple of 2 and 35 is 70. Convert \frac{1}{2} and \frac{27}{35} to fractions with denominator 70.
\frac{35+54}{70}-\frac{1}{4}
Since \frac{35}{70} and \frac{54}{70} have the same denominator, add them by adding their numerators.
\frac{89}{70}-\frac{1}{4}
Add 35 and 54 to get 89.
\frac{178}{140}-\frac{35}{140}
Least common multiple of 70 and 4 is 140. Convert \frac{89}{70} and \frac{1}{4} to fractions with denominator 140.
\frac{178-35}{140}
Since \frac{178}{140} and \frac{35}{140} have the same denominator, subtract them by subtracting their numerators.
\frac{143}{140}
Subtract 35 from 178 to get 143.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}