Verify
false
Share
Copied to clipboard
\frac{2}{4}+\frac{3}{4}-\frac{4}{3}=\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{2+3}{4}-\frac{4}{3}=\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Since \frac{2}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{5}{4}-\frac{4}{3}=\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Add 2 and 3 to get 5.
\frac{15}{12}-\frac{16}{12}=\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Least common multiple of 4 and 3 is 12. Convert \frac{5}{4} and \frac{4}{3} to fractions with denominator 12.
\frac{15-16}{12}=\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Since \frac{15}{12} and \frac{16}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{12}=\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Subtract 16 from 15 to get -1.
-\frac{1}{12}=\frac{25}{20}-\frac{28}{20}+\frac{5}{6}-\frac{6}{5}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Least common multiple of 4 and 5 is 20. Convert \frac{5}{4} and \frac{7}{5} to fractions with denominator 20.
-\frac{1}{12}=\frac{25-28}{20}+\frac{5}{6}-\frac{6}{5}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Since \frac{25}{20} and \frac{28}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{12}=-\frac{3}{20}+\frac{5}{6}-\frac{6}{5}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Subtract 28 from 25 to get -3.
-\frac{1}{12}=-\frac{9}{60}+\frac{50}{60}-\frac{6}{5}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Least common multiple of 20 and 6 is 60. Convert -\frac{3}{20} and \frac{5}{6} to fractions with denominator 60.
-\frac{1}{12}=\frac{-9+50}{60}-\frac{6}{5}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Since -\frac{9}{60} and \frac{50}{60} have the same denominator, add them by adding their numerators.
-\frac{1}{12}=\frac{41}{60}-\frac{6}{5}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Add -9 and 50 to get 41.
-\frac{1}{12}=\frac{41}{60}-\frac{72}{60}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Least common multiple of 60 and 5 is 60. Convert \frac{41}{60} and \frac{6}{5} to fractions with denominator 60.
-\frac{1}{12}=\frac{41-72}{60}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Since \frac{41}{60} and \frac{72}{60} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{12}=-\frac{31}{60}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Subtract 72 from 41 to get -31.
-\frac{5}{60}=-\frac{31}{60}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Least common multiple of 12 and 60 is 60. Convert -\frac{1}{12} and -\frac{31}{60} to fractions with denominator 60.
\text{false}\text{ and }\frac{5}{4}-\frac{7}{5}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Compare -\frac{5}{60} and -\frac{31}{60}.
\text{false}\text{ and }\frac{25}{20}-\frac{28}{20}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Least common multiple of 4 and 5 is 20. Convert \frac{5}{4} and \frac{7}{5} to fractions with denominator 20.
\text{false}\text{ and }\frac{25-28}{20}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Since \frac{25}{20} and \frac{28}{20} have the same denominator, subtract them by subtracting their numerators.
\text{false}\text{ and }-\frac{3}{20}+\frac{5}{6}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Subtract 28 from 25 to get -3.
\text{false}\text{ and }-\frac{9}{60}+\frac{50}{60}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Least common multiple of 20 and 6 is 60. Convert -\frac{3}{20} and \frac{5}{6} to fractions with denominator 60.
\text{false}\text{ and }\frac{-9+50}{60}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Since -\frac{9}{60} and \frac{50}{60} have the same denominator, add them by adding their numerators.
\text{false}\text{ and }\frac{41}{60}-\frac{6}{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Add -9 and 50 to get 41.
\text{false}\text{ and }\frac{41}{60}-\frac{72}{60}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Least common multiple of 60 and 5 is 60. Convert \frac{41}{60} and \frac{6}{5} to fractions with denominator 60.
\text{false}\text{ and }\frac{41-72}{60}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Since \frac{41}{60} and \frac{72}{60} have the same denominator, subtract them by subtracting their numerators.
\text{false}\text{ and }-\frac{31}{60}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Subtract 72 from 41 to get -31.
\text{false}\text{ and }-\frac{31}{60}=\frac{2}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Convert 1 to fraction \frac{2}{2}.
\text{false}\text{ and }-\frac{31}{60}=\frac{2+1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\text{false}\text{ and }-\frac{31}{60}=\frac{3}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Add 2 and 1 to get 3.
\text{false}\text{ and }-\frac{31}{60}=\frac{6}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
Least common multiple of 2 and 4 is 4. Convert \frac{3}{2} and \frac{1}{4} to fractions with denominator 4.
\text{false}\text{ and }-\frac{31}{60}=\frac{6+1}{4}+\frac{1}{8}+\frac{1}{16}
Since \frac{6}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\text{false}\text{ and }-\frac{31}{60}=\frac{7}{4}+\frac{1}{8}+\frac{1}{16}
Add 6 and 1 to get 7.
\text{false}\text{ and }-\frac{31}{60}=\frac{14}{8}+\frac{1}{8}+\frac{1}{16}
Least common multiple of 4 and 8 is 8. Convert \frac{7}{4} and \frac{1}{8} to fractions with denominator 8.
\text{false}\text{ and }-\frac{31}{60}=\frac{14+1}{8}+\frac{1}{16}
Since \frac{14}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\text{false}\text{ and }-\frac{31}{60}=\frac{15}{8}+\frac{1}{16}
Add 14 and 1 to get 15.
\text{false}\text{ and }-\frac{31}{60}=\frac{30}{16}+\frac{1}{16}
Least common multiple of 8 and 16 is 16. Convert \frac{15}{8} and \frac{1}{16} to fractions with denominator 16.
\text{false}\text{ and }-\frac{31}{60}=\frac{30+1}{16}
Since \frac{30}{16} and \frac{1}{16} have the same denominator, add them by adding their numerators.
\text{false}\text{ and }-\frac{31}{60}=\frac{31}{16}
Add 30 and 1 to get 31.
\text{false}\text{ and }-\frac{124}{240}=\frac{465}{240}
Least common multiple of 60 and 16 is 240. Convert -\frac{31}{60} and \frac{31}{16} to fractions with denominator 240.
\text{false}\text{ and }\text{false}
Compare -\frac{124}{240} and \frac{465}{240}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}