Solve for x
x=-1
x = \frac{20}{17} = 1\frac{3}{17} \approx 1.176470588
Graph
Share
Copied to clipboard
6\left(x-1\right)\left(x+2\right)\times \frac{1}{2}+\left(6x-6\right)\left(2x-1\right)+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Variable x cannot be equal to any of the values -2,1 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-1\right)\left(x+2\right), the least common multiple of 2,x+2,3x+6,x^{2}+x-2.
\left(6x-6\right)\left(x+2\right)\times \frac{1}{2}+\left(6x-6\right)\left(2x-1\right)+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Use the distributive property to multiply 6 by x-1.
\left(6x^{2}+6x-12\right)\times \frac{1}{2}+\left(6x-6\right)\left(2x-1\right)+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Use the distributive property to multiply 6x-6 by x+2 and combine like terms.
3x^{2}+3x-6+\left(6x-6\right)\left(2x-1\right)+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Use the distributive property to multiply 6x^{2}+6x-12 by \frac{1}{2}.
3x^{2}+3x-6+12x^{2}-18x+6+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Use the distributive property to multiply 6x-6 by 2x-1 and combine like terms.
15x^{2}+3x-6-18x+6+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Combine 3x^{2} and 12x^{2} to get 15x^{2}.
15x^{2}-15x-6+6+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Combine 3x and -18x to get -15x.
15x^{2}-15x+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Add -6 and 6 to get 0.
15x^{2}-15x+\left(2x-2\right)\left(x+4\right)=12-6x
Use the distributive property to multiply 6 by 2-x.
15x^{2}-15x+2x^{2}+6x-8=12-6x
Use the distributive property to multiply 2x-2 by x+4 and combine like terms.
17x^{2}-15x+6x-8=12-6x
Combine 15x^{2} and 2x^{2} to get 17x^{2}.
17x^{2}-9x-8=12-6x
Combine -15x and 6x to get -9x.
17x^{2}-9x-8-12=-6x
Subtract 12 from both sides.
17x^{2}-9x-20=-6x
Subtract 12 from -8 to get -20.
17x^{2}-9x-20+6x=0
Add 6x to both sides.
17x^{2}-3x-20=0
Combine -9x and 6x to get -3x.
a+b=-3 ab=17\left(-20\right)=-340
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 17x^{2}+ax+bx-20. To find a and b, set up a system to be solved.
1,-340 2,-170 4,-85 5,-68 10,-34 17,-20
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -340.
1-340=-339 2-170=-168 4-85=-81 5-68=-63 10-34=-24 17-20=-3
Calculate the sum for each pair.
a=-20 b=17
The solution is the pair that gives sum -3.
\left(17x^{2}-20x\right)+\left(17x-20\right)
Rewrite 17x^{2}-3x-20 as \left(17x^{2}-20x\right)+\left(17x-20\right).
x\left(17x-20\right)+17x-20
Factor out x in 17x^{2}-20x.
\left(17x-20\right)\left(x+1\right)
Factor out common term 17x-20 by using distributive property.
x=\frac{20}{17} x=-1
To find equation solutions, solve 17x-20=0 and x+1=0.
6\left(x-1\right)\left(x+2\right)\times \frac{1}{2}+\left(6x-6\right)\left(2x-1\right)+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Variable x cannot be equal to any of the values -2,1 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-1\right)\left(x+2\right), the least common multiple of 2,x+2,3x+6,x^{2}+x-2.
\left(6x-6\right)\left(x+2\right)\times \frac{1}{2}+\left(6x-6\right)\left(2x-1\right)+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Use the distributive property to multiply 6 by x-1.
\left(6x^{2}+6x-12\right)\times \frac{1}{2}+\left(6x-6\right)\left(2x-1\right)+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Use the distributive property to multiply 6x-6 by x+2 and combine like terms.
3x^{2}+3x-6+\left(6x-6\right)\left(2x-1\right)+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Use the distributive property to multiply 6x^{2}+6x-12 by \frac{1}{2}.
3x^{2}+3x-6+12x^{2}-18x+6+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Use the distributive property to multiply 6x-6 by 2x-1 and combine like terms.
15x^{2}+3x-6-18x+6+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Combine 3x^{2} and 12x^{2} to get 15x^{2}.
15x^{2}-15x-6+6+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Combine 3x and -18x to get -15x.
15x^{2}-15x+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Add -6 and 6 to get 0.
15x^{2}-15x+\left(2x-2\right)\left(x+4\right)=12-6x
Use the distributive property to multiply 6 by 2-x.
15x^{2}-15x+2x^{2}+6x-8=12-6x
Use the distributive property to multiply 2x-2 by x+4 and combine like terms.
17x^{2}-15x+6x-8=12-6x
Combine 15x^{2} and 2x^{2} to get 17x^{2}.
17x^{2}-9x-8=12-6x
Combine -15x and 6x to get -9x.
17x^{2}-9x-8-12=-6x
Subtract 12 from both sides.
17x^{2}-9x-20=-6x
Subtract 12 from -8 to get -20.
17x^{2}-9x-20+6x=0
Add 6x to both sides.
17x^{2}-3x-20=0
Combine -9x and 6x to get -3x.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 17\left(-20\right)}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 17 for a, -3 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 17\left(-20\right)}}{2\times 17}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-68\left(-20\right)}}{2\times 17}
Multiply -4 times 17.
x=\frac{-\left(-3\right)±\sqrt{9+1360}}{2\times 17}
Multiply -68 times -20.
x=\frac{-\left(-3\right)±\sqrt{1369}}{2\times 17}
Add 9 to 1360.
x=\frac{-\left(-3\right)±37}{2\times 17}
Take the square root of 1369.
x=\frac{3±37}{2\times 17}
The opposite of -3 is 3.
x=\frac{3±37}{34}
Multiply 2 times 17.
x=\frac{40}{34}
Now solve the equation x=\frac{3±37}{34} when ± is plus. Add 3 to 37.
x=\frac{20}{17}
Reduce the fraction \frac{40}{34} to lowest terms by extracting and canceling out 2.
x=-\frac{34}{34}
Now solve the equation x=\frac{3±37}{34} when ± is minus. Subtract 37 from 3.
x=-1
Divide -34 by 34.
x=\frac{20}{17} x=-1
The equation is now solved.
6\left(x-1\right)\left(x+2\right)\times \frac{1}{2}+\left(6x-6\right)\left(2x-1\right)+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Variable x cannot be equal to any of the values -2,1 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-1\right)\left(x+2\right), the least common multiple of 2,x+2,3x+6,x^{2}+x-2.
\left(6x-6\right)\left(x+2\right)\times \frac{1}{2}+\left(6x-6\right)\left(2x-1\right)+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Use the distributive property to multiply 6 by x-1.
\left(6x^{2}+6x-12\right)\times \frac{1}{2}+\left(6x-6\right)\left(2x-1\right)+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Use the distributive property to multiply 6x-6 by x+2 and combine like terms.
3x^{2}+3x-6+\left(6x-6\right)\left(2x-1\right)+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Use the distributive property to multiply 6x^{2}+6x-12 by \frac{1}{2}.
3x^{2}+3x-6+12x^{2}-18x+6+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Use the distributive property to multiply 6x-6 by 2x-1 and combine like terms.
15x^{2}+3x-6-18x+6+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Combine 3x^{2} and 12x^{2} to get 15x^{2}.
15x^{2}-15x-6+6+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Combine 3x and -18x to get -15x.
15x^{2}-15x+\left(2x-2\right)\left(x+4\right)=6\left(2-x\right)
Add -6 and 6 to get 0.
15x^{2}-15x+\left(2x-2\right)\left(x+4\right)=12-6x
Use the distributive property to multiply 6 by 2-x.
15x^{2}-15x+2x^{2}+6x-8=12-6x
Use the distributive property to multiply 2x-2 by x+4 and combine like terms.
17x^{2}-15x+6x-8=12-6x
Combine 15x^{2} and 2x^{2} to get 17x^{2}.
17x^{2}-9x-8=12-6x
Combine -15x and 6x to get -9x.
17x^{2}-9x-8+6x=12
Add 6x to both sides.
17x^{2}-3x-8=12
Combine -9x and 6x to get -3x.
17x^{2}-3x=12+8
Add 8 to both sides.
17x^{2}-3x=20
Add 12 and 8 to get 20.
\frac{17x^{2}-3x}{17}=\frac{20}{17}
Divide both sides by 17.
x^{2}-\frac{3}{17}x=\frac{20}{17}
Dividing by 17 undoes the multiplication by 17.
x^{2}-\frac{3}{17}x+\left(-\frac{3}{34}\right)^{2}=\frac{20}{17}+\left(-\frac{3}{34}\right)^{2}
Divide -\frac{3}{17}, the coefficient of the x term, by 2 to get -\frac{3}{34}. Then add the square of -\frac{3}{34} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{17}x+\frac{9}{1156}=\frac{20}{17}+\frac{9}{1156}
Square -\frac{3}{34} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{17}x+\frac{9}{1156}=\frac{1369}{1156}
Add \frac{20}{17} to \frac{9}{1156} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{34}\right)^{2}=\frac{1369}{1156}
Factor x^{2}-\frac{3}{17}x+\frac{9}{1156}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{34}\right)^{2}}=\sqrt{\frac{1369}{1156}}
Take the square root of both sides of the equation.
x-\frac{3}{34}=\frac{37}{34} x-\frac{3}{34}=-\frac{37}{34}
Simplify.
x=\frac{20}{17} x=-1
Add \frac{3}{34} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}