\frac { 1 } { 2 } + \frac { 1 } { 3 } - \frac { 1 } { 4 } | + | \frac { 1 } { 3 } + \frac { 1 } { 2 } - 1
Evaluate
\frac{19}{24}\approx 0.791666667
Factor
\frac{19}{2 ^ {3} \cdot 3} = 0.7916666666666666
Share
Copied to clipboard
\frac{3}{6}+\frac{2}{6}-\frac{1}{4}||\frac{1}{3}+\frac{1}{2}-1||
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{3+2}{6}-\frac{1}{4}||\frac{1}{3}+\frac{1}{2}-1||
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{5}{6}-\frac{1}{4}||\frac{1}{3}+\frac{1}{2}-1||
Add 3 and 2 to get 5.
\frac{5}{6}-\frac{1}{4}||\frac{2}{6}+\frac{3}{6}-1||
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{5}{6}-\frac{1}{4}||\frac{2+3}{6}-1||
Since \frac{2}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{5}{6}-\frac{1}{4}||\frac{5}{6}-1||
Add 2 and 3 to get 5.
\frac{5}{6}-\frac{1}{4}||\frac{5}{6}-\frac{6}{6}||
Convert 1 to fraction \frac{6}{6}.
\frac{5}{6}-\frac{1}{4}||\frac{5-6}{6}||
Since \frac{5}{6} and \frac{6}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{6}-\frac{1}{4}||-\frac{1}{6}||
Subtract 6 from 5 to get -1.
\frac{5}{6}-\frac{1}{4}|\frac{1}{6}|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{6} is \frac{1}{6}.
\frac{5}{6}-\frac{1}{4}\times \frac{1}{6}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{1}{6} is \frac{1}{6}.
\frac{5}{6}-\frac{1\times 1}{4\times 6}
Multiply \frac{1}{4} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{6}-\frac{1}{24}
Do the multiplications in the fraction \frac{1\times 1}{4\times 6}.
\frac{20}{24}-\frac{1}{24}
Least common multiple of 6 and 24 is 24. Convert \frac{5}{6} and \frac{1}{24} to fractions with denominator 24.
\frac{20-1}{24}
Since \frac{20}{24} and \frac{1}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{19}{24}
Subtract 1 from 20 to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}