Evaluate
\frac{151}{36}\approx 4.194444444
Factor
\frac{151}{2 ^ {2} \cdot 3 ^ {2}} = 4\frac{7}{36} = 4.194444444444445
Share
Copied to clipboard
\frac{1}{2}+\frac{1}{3}\times \frac{4}{3}-\frac{1}{12}+\sqrt{\frac{25}{16}}\times \frac{8}{3}
Rewrite the square root of the division \frac{16}{9} as the division of square roots \frac{\sqrt{16}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{1}{2}+\frac{1\times 4}{3\times 3}-\frac{1}{12}+\sqrt{\frac{25}{16}}\times \frac{8}{3}
Multiply \frac{1}{3} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}+\frac{4}{9}-\frac{1}{12}+\sqrt{\frac{25}{16}}\times \frac{8}{3}
Do the multiplications in the fraction \frac{1\times 4}{3\times 3}.
\frac{9}{18}+\frac{8}{18}-\frac{1}{12}+\sqrt{\frac{25}{16}}\times \frac{8}{3}
Least common multiple of 2 and 9 is 18. Convert \frac{1}{2} and \frac{4}{9} to fractions with denominator 18.
\frac{9+8}{18}-\frac{1}{12}+\sqrt{\frac{25}{16}}\times \frac{8}{3}
Since \frac{9}{18} and \frac{8}{18} have the same denominator, add them by adding their numerators.
\frac{17}{18}-\frac{1}{12}+\sqrt{\frac{25}{16}}\times \frac{8}{3}
Add 9 and 8 to get 17.
\frac{34}{36}-\frac{3}{36}+\sqrt{\frac{25}{16}}\times \frac{8}{3}
Least common multiple of 18 and 12 is 36. Convert \frac{17}{18} and \frac{1}{12} to fractions with denominator 36.
\frac{34-3}{36}+\sqrt{\frac{25}{16}}\times \frac{8}{3}
Since \frac{34}{36} and \frac{3}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{31}{36}+\sqrt{\frac{25}{16}}\times \frac{8}{3}
Subtract 3 from 34 to get 31.
\frac{31}{36}+\frac{5}{4}\times \frac{8}{3}
Rewrite the square root of the division \frac{25}{16} as the division of square roots \frac{\sqrt{25}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{31}{36}+\frac{5\times 8}{4\times 3}
Multiply \frac{5}{4} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{31}{36}+\frac{40}{12}
Do the multiplications in the fraction \frac{5\times 8}{4\times 3}.
\frac{31}{36}+\frac{10}{3}
Reduce the fraction \frac{40}{12} to lowest terms by extracting and canceling out 4.
\frac{31}{36}+\frac{120}{36}
Least common multiple of 36 and 3 is 36. Convert \frac{31}{36} and \frac{10}{3} to fractions with denominator 36.
\frac{31+120}{36}
Since \frac{31}{36} and \frac{120}{36} have the same denominator, add them by adding their numerators.
\frac{151}{36}
Add 31 and 120 to get 151.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}