Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}+\frac{1}{2}x^{2}-2x=0
Subtract 2x from both sides.
\frac{1}{2}x^{2}-2x+\frac{1}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{2}\times \frac{1}{2}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -2 for b, and \frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{2}\times \frac{1}{2}}}{2\times \frac{1}{2}}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-2\times \frac{1}{2}}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-2\right)±\sqrt{4-1}}{2\times \frac{1}{2}}
Multiply -2 times \frac{1}{2}.
x=\frac{-\left(-2\right)±\sqrt{3}}{2\times \frac{1}{2}}
Add 4 to -1.
x=\frac{2±\sqrt{3}}{2\times \frac{1}{2}}
The opposite of -2 is 2.
x=\frac{2±\sqrt{3}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{3}+2}{1}
Now solve the equation x=\frac{2±\sqrt{3}}{1} when ± is plus. Add 2 to \sqrt{3}.
x=\sqrt{3}+2
Divide 2+\sqrt{3} by 1.
x=\frac{2-\sqrt{3}}{1}
Now solve the equation x=\frac{2±\sqrt{3}}{1} when ± is minus. Subtract \sqrt{3} from 2.
x=2-\sqrt{3}
Divide 2-\sqrt{3} by 1.
x=\sqrt{3}+2 x=2-\sqrt{3}
The equation is now solved.
\frac{1}{2}+\frac{1}{2}x^{2}-2x=0
Subtract 2x from both sides.
\frac{1}{2}x^{2}-2x=-\frac{1}{2}
Subtract \frac{1}{2} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{1}{2}x^{2}-2x}{\frac{1}{2}}=-\frac{\frac{1}{2}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{2}{\frac{1}{2}}\right)x=-\frac{\frac{1}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-4x=-\frac{\frac{1}{2}}{\frac{1}{2}}
Divide -2 by \frac{1}{2} by multiplying -2 by the reciprocal of \frac{1}{2}.
x^{2}-4x=-1
Divide -\frac{1}{2} by \frac{1}{2} by multiplying -\frac{1}{2} by the reciprocal of \frac{1}{2}.
x^{2}-4x+\left(-2\right)^{2}=-1+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-1+4
Square -2.
x^{2}-4x+4=3
Add -1 to 4.
\left(x-2\right)^{2}=3
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
x-2=\sqrt{3} x-2=-\sqrt{3}
Simplify.
x=\sqrt{3}+2 x=2-\sqrt{3}
Add 2 to both sides of the equation.