Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}-\frac{1}{2+\sqrt{3}}
Rationalize the denominator of \frac{1}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{2\times 3}-\frac{1}{2+\sqrt{3}}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}}{6}-\frac{1}{2+\sqrt{3}}
Multiply 2 and 3 to get 6.
\frac{\sqrt{3}}{6}-\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\frac{\sqrt{3}}{6}-\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}}{6}-\frac{2-\sqrt{3}}{4-3}
Square 2. Square \sqrt{3}.
\frac{\sqrt{3}}{6}-\frac{2-\sqrt{3}}{1}
Subtract 3 from 4 to get 1.
\frac{\sqrt{3}}{6}-\left(2-\sqrt{3}\right)
Anything divided by one gives itself.
\frac{\sqrt{3}}{6}-2-\left(-\sqrt{3}\right)
To find the opposite of 2-\sqrt{3}, find the opposite of each term.
\frac{\sqrt{3}}{6}-2+\sqrt{3}
The opposite of -\sqrt{3} is \sqrt{3}.
\frac{7}{6}\sqrt{3}-2
Combine \frac{\sqrt{3}}{6} and \sqrt{3} to get \frac{7}{6}\sqrt{3}.